Using gret l for Principles of Econometrics, 4th Edition

Spurious Regressions

It is possible to estimate a regression and find a statistically significant relationship even if none exists. In time-series analysis this is actually a common occurrence when data are not stationary. This example uses two data series, rwl and rw2, that were generated as independent random walks.

rw 1 : yt = yt-1 + vu (12 1)

The errors are independent standard normal random deviates generated using a pseudo-random number generator. As you can see, Xt and yt are not related in any way. To explore the empirical relationship between these unrelated series, load the spurious. gdt data and declare the data to be time-series.

1 open "@gretldirdatapoespurious. gdt"

2 setobs 1 1 —special-time-series

The sample information at the bottom of the main gretl window indicates that the data have already been declared as time-series and that the full range (1-700) is in memory. The first thing to do is to plot the data using a time-series plot. To place both series in the same time-series graph, select View>Graph specified vars>Time-series plots from the pull-down menu. This will reveal the ‘define graph’ dialog box. Place both series into the ‘Selected vars’ box and click OK. The result appears in top part of Figure 12.4 (after editing) below. The XY scatter plot is obtained similarly, except use View>Graph specified vars>X-Y scatter from the pull-down menu. Put rwl on the y axis and rw2 on the x axis.

The linear regression confirms this. Left click on the graph to reveal a pop-up menu, from which you choose Edit. This brings up the plot controls shown in Figure 4.16. Select the linear fit option to reveal the regression results in Table 12.1.

The coefficient on rw2 is positive (0.842) and significant (t = 40.84 > 1.96). However, these variables are not related to one another! The observed relationship is purely spurious. The cause of the spurious result is the nonstationarity of the two series. This is why you must check your data for stationarity whenever you use time-series in a regression.

OLS, using observations 1-700
Dependent variable: rw1

Coefficient Std. Error t-ratio

0.620478 28.7167 0.0000

0.0206196 40.8368 0.0000

Sum squared resid 51112.33 S. E. of regression 8.557268 R2 0.704943 Adjusted R2 0.704521

Table 12.1: Least squares estimation of a spurious relationship.

Добавить комментарий

Using gret l for Principles of Econometrics, 4th Edition

Simulation

In appendix 10F of POE4, the authors conduct a Monte Carlo experiment comparing the performance of OLS and TSLS. The basic simulation is based on the model y = x …

Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis is that these estimates are consistent-that is, that the requirement of orthogonality of the model’s errors …

Time-Varying Volatility and ARCH Models: Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas - ticity) …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.