Springer Texts in Business and Economics
Seemingly Unrelated Regressions
10.1 When Is OLS as Efficient as Zellner’s SUR?
a. From (10.2), OLS on this system gives
p /Р 1,ols I
p ols = "
P2,ols I
|
This is OLS on each equation taken separately. For (10.2), the estimated var("ols) is given by
where s2 = RSS/(2T — (K1 + K2)) and RSS denotes the residual sum of squares of this system. In fact, the RSS = e,1e1 + e2e2 = RSS1 + RSS2 where
ei = yi — Xi P i, ols fori = 1,2.
If OLS was applied on each equation separately, then
var (p 1,ol^ = s2 (X1X1)-1 with s2 = RSS1/(T — K1)
and
var (p2,ol^ = s2 (X2X2)-1 with s2 = RSS2/(T — K2).
Therefore, the estimates of the variance-covariance matrix of OLS from the system of two equations differs from OLS on each equation separately by a scalar, namely s2 rather than si2 for i = 1 , 2.
B. H. Baltagi, Solutions Manual for Econometrics, Springer Texts in Business and Economics, DOI 10.1007/978-3-642-54548-1—10, © Springer-Verlag Berlin Heidelberg 2015
b. For the system of equations given in (10.2), X0 = diag[X0], £2 1 =
X 1 <S> IT and |
||||||
X0£-1 = |
1 1 o |
0 x2_ |
1----------- 1 Q H4 H4 Q H4 H4 1_ 1 |
= |
1 1 Q ><я |
о12 x; о22 x2 |
Also, X0X = diag [X0X0] with (X0X) 1 = diag [(X[Xi) ;]. Therefore, Px = diagpXj and Px = diag [P^ ].
Hence,
o11X0iPx1 o12X0iPx2
o21X2Px1 ct22X2Px2
But, X0PXi = 0 for i = 1,2. Hence, X0£-;Px =
and this is zero if оijX0 PXj = 0 for i ф j with i, j = 1,2.
c. (i) If Ojj = 0 for i ф j, then, X is diagonal. Hence, E_1 is diagonal and оij = 0 for i ф j. This automatically gives оijX0PXj = 0 for i ф j from part (b).
(ii) If all the Xi’s are the same, then X1 = X2 = X* and PX1 = PX2 = Px* . Hence,
X0PXj = X*0PX* = 0 for i, j = 1,2.
This means that о^XiPxj = 0 from part (b) is satisfied for i, j = 1,2.
d. IfXi = XjC0 where C is a non-singular matrix, then X0PXj = CX0PXj = 0. Alternatively, X0X0 = CXj and (X0^-1 = C0-1 (xjX^ C-1.
Therefore,
Px0 = Pxj and Iі x0 = Iі Xj.
Hence, X0PXj = X0PXi = 0. Note that when X0 = Xj then C = Ik where K is the number of regressors.
10.3 What Happens to Zellner s SUR Estimator when the Set of Regressors in One Equation Are Orthogonal to Those in the Second Equation?
CT11X1X1 0 0 o22x2x2 |
a11 Xiy1 C tf12Xiy2 a21 X2y1 C o22X2y2 |
a. If Xi and X2 are orthogonal, then X1X2 = 0. From (10.6) we get
rr11X’ X 0 n 1 r
a11X1y1 C a12X1y2 a21X2y1 C a22X2y2 |
" GLS =
"(ВД) 1 X1y1 C a12 (X1X1) 1 X^/a11" _a21 (X2X2)_1 X2y1/a22 C (X2X2)-1 X2y2_
= "P 1,ols C (a12/a11) (ВД) 1 X^"
_P2,ols C (a21/a22) (X2X2)_1 X2y1_ as required.
(X1X1)"1 /a11
0
If you have doubts, note that
P 1,gls = "1 C (X1X1) 1 X1u1 C (a12/a11) (X1X1) 1 X^ using X1X2 = 0. Hence, E(" 1,GLS) = "1 and var 1,GLs) = E (p 1,GLS - (P 1,GLS -
a22 - a12 —a12 an Hence, a12/a11 = —a12/a22 substituting that in var(" 1,GLS) we get |
= a11 (X1X1)-1 C a22(a12/a11)2 (X1X1)-1 C 2a12a12/a11 (X1X1) 1 .
= (X1X1) 1 [ana22 C aj22 — 2ajy /a22 = (X^) 1 /a11
since a1 1 = a22/(a1 1 a22 — a^2). Similarly, one can show that
var(" 2,gls) = (X2X2) 1/a22.
c. We know that var("1,ols) = 011 (X'jX^ 1 andvar("2,ois) = 022 (X^X^ V If Xi and X2 are single regressors, then (X(Xi) are scalars for i = 1,2. Hence,
10.4 From (10.13), sij = e(ej/[T — Ki — Kj + tr(B)] for i, j = 1,2. where ei = yi — Xi"i ols for i = 1,2. This can be rewritten as ei = PXiyi = PXiui for i = 1 , 2. Hence,
E(e0ej) = E(u'PXiPXjuj) = E[tr(u0PXiPXjuj)] = E[tr (uju'PxiPxj)]
= tr[E (ujuQ PXi Xj] = °jitr (PXi Xj) .
But 0ji = 0jj and tr (IіXiPNXj) = tr (It — Pxj — PXi + Px^x) = T — Kj — Ki +
tr(B) where B = PXiPXj. Hence, E(sij) = E(e|ej) /tr(PXiPXj) = 0ij. This proves that sij is unbiased for 0ij for i, j = 1,2.
10.5 Relative Efficiency of OLS in the Case of Simple Regressions. This is based on Kmenta (1986, pp. 641-643).
a. Using the results in Chap. 3, we know that for a simple regression Yi = a + "Xi + Ui that "ols = p xyi/ p x2 and var ("ok) = 02 j p x2
where xi = Xi — Xi and var(ui) = 02. Hence, for the first equation in (10.15), we get var 12,ols) = 011^1x1 where mx1X1 = p (Xu — X1)2 and 011 = var(u1).
Similarly, for the second equation in (10.15), we get var^"22,ols) =
t - 2
022/mx2x2 where mx2x2 = J2 (X2t — X2 and 022 = var(u2).
orthogonal projection on the constant tT, see problem 7.2. This yields Y і = X i"i2 + Q Y2 = X2P22 + i-2
where Yi = (IT — Jt/Уі, Xi = (IT — JT)Xi and iii = (IT — JT/ui for i =
1,2. Note that Y' = (Yn,.., YiT),X' = (Xii, ..,XiT) andu' = (uii,..,uiT) for i = 1,2. GLS on this system of two equations yields the same GLS estimators of "12 and "22 as in (10.15). Note that £2 = El U 1 І (гі 1, ii 2) =
Vu7
X <S> (IT — JT) where X = [cFjj] for i, j = 1,2. Also, for this transformed system
CTnX1TX1 c12X 1X2
ct[5]2X22X1 c[6]X 2X 2 since X—1 <S> (IT — Jt) is the generalized inverse of X <S> (IT — Jt) and
(IT — JT)Xi = Xi for i = 1,2. But, Xj and Xj are Txl vectors, hence,
XjXj = mxi4 = p (Xjt — Xj)(Xjt — Xj) for i, j = 1,2. So
t=1
11 12
c11mxixi c12mxix2
c12mx2xi c11mx2x2
Simple inversion of this 2 x 2 matrix yields
var (" !2,GLS^ = (c11 C22 — CT^) c11mx2x2/ [C11C22mxixi mx2x2 — C^m^J.
where the denominator is the determinant of the matrix to be inverted. Also,
var ("22,gls) = (СГ11СТ22 - °h) CT22mx! x! / [CTnCT22mx1x1mx2x2 - 05^^] .
c. Defining p = correlation (u1,u2) = o12/(o11o22)1/2 and r = sample correlation coefficient between X1 and X2 = mx1x2/(mx2x2mx1x1) =2, then
var(" 12,GLs)/var(" 12,ols)
= (011022 - 0^) mx1x1 mx2x2/ [011022mx2x2 mx1x1 - 05^^]
= 011022(1 - р2)/оц022(1 - p2r2) = (1 - p2)/(1 - p2r2) similarly, var("22,GLs)/var("22,ols)
= (011022 - 0^2) mx1x1 mx2x2/ [011022mx2x2 mx1x1 - 05^^]
= 011022(1 - p2)/011022(1 - p2r2) = (1 - p2)/(1 - p2r2).
d. Call the relative efficiency ratio E = (1 - p2)/(1 - p2r2). Let 0 = p2, then E = (1 - 0)/(1 - 0г2). So that
-(1 - 0r2) + r2(1 - 0) -1 + 0r2 + r2 - 0r2 -(1 - r2) ^ 0
(1 - 0r2)2 (1 - 0r2)2 (1 - 0r2)2 <
since r2 < 1. Hence, the relative efficiency ratio is a non-increasing function of 0 = p2. Similarly, let X = r2, then E = (1 - 0)/(1 - 0X) and 9E/9X = 0(1 - 0)/(1 - 0X)2 > 0 since 0 < 0 < 1. Hence, the relative efficiency ratio is a non-decreasing function of X = r2. This relative efficiency can be computed for various values of p2 and r2 between 0 and 1 at 0.1 intervals. See Kmenta (1986, Table 12-1, p. 642).
10.6 Relative Efficiency of OLS in the Case of Multiple Regressions. This is based on Binkely and Nelson (1988). Using partitioned inverse formulas, see the solution to problem 7.7(c), we get that the first block of the inverted matrix in (10.17) is
Divide both the matrix on the right hand side and the denominator by O11O22, we get
where p2 = o122/o11o22. Hence,
But p2022/022 = 1/011, hence
Add and subtract p2X,1X1 from the expression to be inverted, one gets var 1,gls) = 011(1 — p2) [(1 — p2)X[X1 + p2X1Px2X1] 1 .
Factor out (1 — p2) in the matrix to be inverted, one gets var 1,gl^ = 011 {x;X1 + [p2/(1 — p2)]E0E}-1
where E = Px2X1 is the matrix whose columns are the OLS residuals of each variable in X1 regressed on X2.
10.7 When X1 and X2 are orthogonal, then X[X2 = 0. Rq is the R2 of the regression of variable Xq on the other (K1 — 1) regressors in X1. R*2 is the R2 of
E = Px2 X1 = X1 — Px2 X1 = X1 since Px2 X1 = X2 (X2X2) 1 X2X1 = 0.
regressors in Xi. Hence, R = R*2 and from (10.22) we get
IT T
XX (1 - R)+e2q (i - Rq)
t=1 t=1
= <wj E x2q (i - Rq^ (1 + 92)
T
= CT11(1 - P2)/J2 xtq(1 - R2)
t=1
since 1 C 02 = 1/(1 — p2).
10.8 SUR With Unequal Number of Observations. This is based on Schmid (1977).
a. £2 given in (10.25) is block-diagonal. Therefore, £2 1 is block-diagonal:
-11IT |
-12IT |
0 |
|
-12IT |
-22IT |
0 |
with S 1 |
0 |
0 |
-L In -22 iNJ |
[-ij] for i, j = 1,2. |
X1 |
0 |
y1 |
||
X= |
0 |
X2* |
and y = |
y2* |
0 |
X20 |
y20 |
where X1 is TxK1, X* is TxK2 and Xo is NxK2. Similarly, y1 is Tx1, y* is
Tx1 andy2 is Nx1.
CT11X,1 CT12X! 0
-12X*' -22X2*' - lX20/
2 2 -22 2
Therefore, " GLS = (X,£_1X)_1X,£_1y
_ ’-пх;х1 -12x;x2*
= -12X*0X1 -22X2*'X2* C (X20%7-22)
"-11X,1y1 C -12Х1у*
-12X*'y1 C -22X*'y* C (Х2'у0/-22)
b. If -12 = 0, then from (10.25)
-11 It |
0 |
0 |
-L It C11 |
0 |
0 |
||
fi = |
0 |
-22 It |
0 |
and fi 1 = |
0 |
_L It -22 |
0 |
0 |
0 |
-22 In |
0 |
0 |
—In -22 N |
so that -12 = 0 and сii = 1/-„ for i = 1,2. From (10.26) |
XjXj -11 |
0 |
-1 |
(X1y1/-11) |
0 |
X*'X2* X?0%0 -22 -22 |
X2*0y2* C X20,y2^ /-22 |
Therefore, SUR with unequal number of observations reduces to OLS on each equation separately if -12 = 0.
10.9 Grunfeld (1958) investment equation.
a. OLS on each firm.
Firm 1
Autoreg Procedure Dependent Variable = INVEST Ordinary Least Squares Estimates
SSE |
275298.9 |
DFE |
16 |
|
MSE |
17206.18 |
Root MSE |
131.1723 |
|
SBC |
244.7953 |
AIC |
241.962 |
|
Reg Rsq |
0.8411 |
Total Rsq |
0.8411 |
|
Durbin-Watson |
1.3985 |
|||
Godfrey's Serial Correlation Test |
||||
Alternative |
LM |
Prob>LM |
||
AR(+ 1) |
2.6242 |
0.1052 |
||
AR(+ 2) |
2.9592 |
0.2277 |
||
AR(+ 3) |
3.8468 |
0.2785 |
Variable |
DF |
B Value |
Std Error |
t Ratio |
Approx Prob |
Intercept |
1 |
-72.906480 |
154.0 |
-0.473 |
0.6423 |
VALUE1 |
1 |
0.101422 |
0.0371 |
2.733 |
0.0147 |
CAPITAL1 |
1 |
0.465852 |
0.0623 |
7.481 |
0.0001 |
Covariance of B-Values |
|||
Intercept |
VALUE1 |
CAPITAL1 |
|
Intercept |
23715.391439 |
-5.465224899 |
0.9078247414 |
VALUE1 |
-5.465224899 |
0.0013768903 |
-0.000726424 |
CAPITAL1 |
0.9078247414 |
-0.000726424 |
0.0038773611 |
Firm 2
Autoreg Procedure Dependent Variable = INVEST Ordinary Least Squares Estimates
SSE |
224688.6 |
DFE |
16 |
MSE |
14043.04 |
Root MSE |
118.5033 |
SBC |
240.9356 |
AIC |
238.1023 |
Reg Rsq |
0.1238 |
Total Rsq |
0.1238 |
Durbin-Watson |
1.1116 |
Godfrey's Serial Correlation Test Alternative LM Prob>LM
AR(+ 1) |
4.6285 |
0.0314 |
|||
AR(+ 2) |
10.7095 |
0.0047 |
|||
AR(+ 3) |
10.8666 |
0.0125 |
|||
Variable |
DF |
B Value |
Std Error |
t Ratio |
Approx Prob |
Intercept |
1 |
306.273712 |
185.2 |
1.654 |
0.1177 |
VALUE1 |
1 |
0.015020 |
0.0913 |
0.165 |
0.8713 |
CAPITAL1 |
1 |
0.309876 |
0.2104 |
1.473 |
0.1602 |
Covariance of B-Values
Intercept VALUE1 CAPITAL1
Intercept 34309.129267 -15.87143322 -8.702731269
VALUE1 -15.87143322 0.0083279981 -0.001769902
CAPITAL1 -8.702731269 -0.001769902 0.0442679729
Firm 3
Autoreg Procedure Dependent Variable = INVEST Ordinary Least Squares Estimates
SSE |
14390.83 |
DFE |
16 |
MSE |
899.4272 |
Root MSE 29.99045 |
|
SBC |
188.7212 |
AIC 185.8879 |
|
Reg Rsq 0.6385 Durbin-Watson 1.2413 |
Total Rsq |
0.6385 |
|
Godfrey's Serial Correlation Test |
|||
Alternative LM |
Prob>LM |
||
AR(+ 1) 2.7742 0.0958 AR(+ 2) 8.6189 0.0134 AR(+ 3) 11.2541 0.0104 |
|||
Variable |
DF B Value |
Std Error t Ratio |
Approx Prob |
Intercept |
1 -14.649578 |
39.6927 -0.369 |
0.7169 |
VALUE1 |
1 0.031508 |
0.0189 1.665 |
0.1154 |
CAPITAL1 |
1 0.162300 |
0.0311 5.213 |
0.0001 |
Covariance of B-Values |
|||
Intercept |
VALUE1 |
CAPITAL1 |
|
Intercept |
1575.5078379 |
-0.706680779 |
-0.498664487 |
VALUE1 |
-0.706680779 |
0.0003581721 |
0.00007153 |
CAPITAL1 |
-0.498664487 |
0.00007153 0.0009691442 |
Plot of RESID*YEAR.
SUR model using the first 2 firms
Model: FIRM1
Dependent variable: FIRM1J
Parameter Estimates
|
Model: FIRM2
Dependent variable: FIRM2J
Parameter Estimates
Variable |
DF |
Parameter Estimate |
Standard Error |
T for HO: Parameter = 0 |
Prob >|T| |
INTERCEP |
1 |
309.978987 |
185.198638 |
1.674 |
0.1136 |
FIRM2.F1 |
1 |
0.012508 |
0.091244 |
0.137 |
0.8927 |
FIRM2_C1 |
1 |
0.314339 |
0.210382 |
1.494 |
0.1546 |
SUR model using the first 2 firms SYSLIN Procedure
Seemingly Unrelated Regression Estimation
Sigma |
FIRM1 |
FIRM2 |
FIRM1 FIRM2 |
17206.183816 -355.9331435 |
-355.9331435 14043.039401 |
Cross Model Correlation |
||
Corr |
FIRM1 |
FIRM2 |
FIRM1 FIRM2 |
1 -0.022897897 |
-0.022897897 1 |
Cross Model Inverse Correlation |
||
Inv Corr |
FIRM1 |
FIRM2 |
FIRM1 FIRM2 |
1.0005245887 0.0229099088 |
0.0229099088 1.0005245887 |
Cross Model Inverse Covariance |
||
Inv Sigma |
FIRM1 |
FIRM2 |
FIRM1 FIRM2 |
0.0000581491 1.4738406E - 6 |
1.4738406E - 6 0.000071247 |
System Weighted MSE: 0.99992 with 32 degrees of freedom. System Weighted R-Square: 0.7338
d. SUR model using the first three firms
Model: FIRM1
Dependent variable: FIRM1J
Parameter Estimates
Variable |
DF |
Parameter Estimate |
Standard Error |
T for HO: Parameter = 0 |
Prob > |T| |
INTERCEP |
1 |
-27.616240 |
147.621696 |
-0.187 |
0.8540 |
FIRM1.F1 |
1 |
0.088732 |
0.035366 |
2.509 |
0.0233 |
FIRM1.C1 |
1 |
0.481536 |
0.061546 |
7.824 |
0.0001 |
Model: FIRM2
Dependent variable: FIRM2J
Parameter |
Standard |
T for HO: |
||
Variable DF |
Estimate |
Error |
Parameter = 0 |
Prob > |T| |
INTERCEP 1 |
255.523339 |
167.011628 |
1.530 |
0.1456 |
FIRM2.F1 1 |
0.034710 |
0.081767 |
0.425 |
0.6769 |
FIRM2.C1 1 |
0.353757 |
0.195529 |
1.809 |
0.0892 |
Model: FIRM3 |
||||
Dependent variable: |
1 CO cc Ll_ |
|||
Parameter Estimates |
||||
Parameter |
Standard |
T for HO: |
||
Variable DF |
Estimate |
Error |
Parameter = 0 |
Prob > |T| |
INTERCEP 1 |
-27.024792 |
35.444666 |
-0.762 |
0.4569 |
FIRM3.F1 1 |
0.042147 |
0.016579 |
2.542 |
0.0217 |
FIRM3.C1 1 |
0.141415 |
0.029134 |
4.854 |
0.0002 |
SUR model using the first 3 firms |
SYSLIN Procedure
Seemingly Unrelated Regression Estimation
Cross Model Covariance
|
Cross Model Correlation
|
Chapter 10: Seemingly Unrelated Regressions |
247 |
|||
Cross Model Inverse Covariance |
||||
Inv Sigma |
FIRM1 |
FIRM2 |
FIRM3 |
|
FIRM1 |
0.000072207 |
0.0000234438 |
-0.000163408 |
|
FIRM2 |
0.0000234438 |
0.000105582 |
-0.000255377 |
|
FIRM3 |
-0.000163408 |
-0.000255377 |
0.0018994423 |
System Weighted MSE: 0.95532 with 48 degrees of freedom. System Weighted R-Square: 0.6685
SAS PROGRAM
data A; infile ‘B:/DATA/grunfeld. dat’; input firm year invest value capital;
data aa; set A; keep firm year invest value capital; if firm>3 then delete;
data A1; set aa; keep firm year invest value capital;
if firm>1 then delete;
data AA1; set A1;
value1=lag(value);
capital1=lag(capital);
Proc autoreg data=AA1;
model invest=value1 capital1/ godfrey=3 covb; output out=E1 r=resid; title‘Firm 1’; proc plot data=E1;
plot resid*year=‘*’;
Title ‘Firm 1’; run;
********************************************************,
data A2; set aa; keep firm year invest value capital; if firm=1 or firm=3 then delete;
data AA2; set A2;
value1=lag(value);
capital1=lag(capital);
Proc autoreg data=AA2;
model invest=value1 capital1/ godfrey=3 covb; output out=E2 r=resid; title ‘Firm 2’; proc plot data=E2;
plot resid*year=‘*’;
Title ‘Firm 2’; run;
data A3; set aa; keep firm year invest value capital;
iffirm<=2 then delete;
data AA3; set A3;
value1=lag(value);
capital1=lag(capital);
Proc autoreg data=AA3;
model invest=value1 capital1/ godfrey=3 covb; output out=E3 r=resid; title ‘Firm 3’; proc plot data=E3;
plot resid*year=‘*’; title ‘Firm 3’; run;
Proc iml; use aa;
read all into temp;
sur=temp[1:20,3:5]||temp[21:40,3:5]||temp[41:60,3:5]; c=f‘‘F1 _i” “F1_f” ‘‘F1_c’’ “F2_i" “F2_f” “F2_c” “F3_i" ‘‘F3. create sur_data from sur [colname=c]; append from sur;
data surdata; set sur_data; firml _i=f1 _i; firm1_f1=lag(f1_f); firm1_c1=lag(f1_c) firm2j=f^_i; firm2_f1=lag(f2_f); firm2_c1=lag(f2_c) firm3j=f3j; firm3_f1=lag(f3_f); firm3_c1=lag(f3_c)
proc syslin sur data=surdata;
Firm1: model firm1 _i=firm1_f1 firmed;
Firm2: model firm2_i=firm2_f1 firm2_c1; title ‘SUR model using the first 2 firms’; run;
proc syslin sur data=surdata;
Firm1: model firm1 J=firm1_f1 firmed;
Firm2: model firm2_i=firm2_f1 firmed;
Firm3: model firm3_i=firm3_f1 firm3_c1; title ‘SUR model using the first 3 firms’; run;
10.11 Grunfeld (1958) Data-Unequal Observations. The SAS output is given below along with the program. Ignoring the extra OBS
-58.93095 0.1803626 0.3858253 135.57919 0.0679503 0.1309581 |
SRIVASTAVA & ZAATAR METHOD
|
HOCKING & SMITH METHOD
|
SAS PROGRAM
data AA; infile ‘a:/ch10/grunfeld. dat’; input firm year invest value capital;
data AAA; set AA;
keep firm year invest value capital;
if firm>=3 then delete;
Proc IML;
use AAA; read all into temp;
Y1=temp[1:15,3]; Y2=temp[21:40,3]; Y=Y1//Y2; X1=temp[1:15,4:5];X2=temp[21:40,4:5];
N1=15; N2=20; NN=5; K=3;
SCHMIDT’S FEASIBLE GLS ESTIMATORS X1=J(N1,1,1)||X1;
X2=J(N2,1,1)||X2;
X=(X1//J(N2,K,0))||(J(N1,K,0)//X2);
BT1=INV(X1'*X1)*X1'*Y1;
BT2=INV(X2'*X2)*X2'*Y2;
e1=Y1-X1*BT1; e2=Y2-X2*BT2; e2_15=e2[1:N1,];ee=e2[16:N2,];
S11=e1'*e1/N1; S12=e1'*e2_15/N1; S22_15=e2_15'*e2_15/N1;
S22_4=ee'*ee/NN; S22=e2'*e2/N2;
S_12=S12*SQRT (S22/S22J5);
S_11=S11 - (NN/N2)*((S12/S22_15)**(2))*(S22_15-S22_4); S1 _2=S12*S22/S22_15; ZERO=J(NN,2*N1,0); OMG1=((S11 ||S12)//(S12||S22_15))@I(N1);
OMG2=((S111| S12)//(S121| S22))@I(N1);
OMG3=((S111| S_12)//(S_121| S22))@I(N1);
OMG4=((S_11||S1_2)//(S1_2||S22))@I(N1);
OMEGA1=(OMG1//ZERO)||(ZERO//(S22_15@I(NN)));
OMEGA2=(OMG2//ZERO)||(ZERO'//(S22@I(NN)));
OMEGA3=(OMG3//ZERO)||(ZERO'//(S22@I(NN)));
OMEGA4=(OMG4//ZERO)||(ZERO'//(S22@I(NN)));
OMG1_INV=INV(OMEGA1);OMG2_INV=INV(OMEGA2);
OMG3JNV=INV(OMEGA3);OMG4JNV=INV(OMEGA4);
********** Ignoring the extra OBS **********;
BETA1=INV(X'*OMG1 _INV*X)*X'*OMG1 _INV*Y;
VAR_BT1=INV(X'*OMG1_INV*X);
STD_BT1=SQRT(VECDIAG(VAR_BT1));
OUT1=BETA1 ||STD_BT1; C={”BETA” "STD_BETA"}; PRINT‘Ignoring the extra OBS’,,OUT1(|COLNAME=C|);
********** WILKS METHOD **********;
BETA2=INV(X'*OMG2_INV*X)*X'*OMG2_INV*Y;
VAR_BT2=INV(X'*OMG2_INV*X);
STD_BT2=SQRT(VECDIAG(VAR_BT2));
OUT2=BETA2||STD_BT2;
PRINT ‘WILKS METHOD’,,OUT2(|COLNAME=C|);
********** SRIVASTAVA & ZAATAR METHOD **********; BETA3=INV(X'*OMG3_INV*X)*X'*OMG3_INV*Y;
VAR_BT3=INV(X'*OMG3_INV*X);
STD_BT3=SQRT(VECDIAG(VAR_BT3));
OUT3=BETA3||STD_BT3;
PRINT ‘SRIVASTAVA & ZAATAR METHOD’,,OUT3(|COLNAME=C|);
HOCKING & SMITH METHOD **********; BETA4=INV(X'*OMG4_INV*X)*X'*OMG4_INV*Y; VAR_BT4=INV(X'*OMG4_INV*X); STD_BT4=SQRT(VECDIAG(VAR_BT4)); OUT4=BETA4||STD_BT4;
PRINT ‘HOCKING & SMITH METHOD’,,OUT4(|COLNAME=C|);
10.12 Baltagi and Griffin (1996) Gasoline Data.
a. SUR Model with the first two countries
SYSLIN Procedure
Seemingly Unrelated Regression Estimation Model: AUSTRIA Dependent variable: AUS_Y
Parameter Estimates
|
Model: BELGIUM Dependent variable: BELY
Parameter Estimates
Variable |
DF |
Parameter Estimate |
Standard Error |
T for HO: Parameter = 0 |
Prob > |T| |
INTERCEP |
1 |
2.843323 |
0.445235 |
6.386 |
0.0001 |
BELX1 |
1 |
0.835168 |
0.169508 |
4.927 |
0.0002 |
BELX2 |
1 |
-0.130828 |
0.153945 |
-0.850 |
0.4088 |
BELX3 |
1 |
-0.686411 |
0.092805 |
-7.396 |
0.0001 |
b. SUR Model with the first three countries
SYSLIN Procedure
Seemingly Unrelated Regression Estimation Model: AUSTRIA Dependent variable: AUS_Y
Parameter Estimates
|
Model: BELGIUM Dependent variable: BELY
Parameter Estimates
Variable |
DF |
Parameter Estimate |
Standard Error |
T for HO: Parameter = 0 |
Prob > |T| |
INTERCEP |
1 |
2.910755 |
0.440417 |
6.609 |
0.0001 |
BELX1 |
1 |
0.887054 |
0.167952 |
5.282 |
0.0001 |
BELX2 |
1 |
-0.128480 |
0.151578 |
-0.848 |
0.4100 |
BELX3 |
1 |
-0.713870 |
0.091902 |
-7.768 |
0.0001 |
Model: CANADA Dependent variable: CAN_Y
Parameter Estimates
Variable |
DF |
Parameter Estimate |
Standard Error |
T for HO: Parameter = 0 |
Prob > |T| |
INTERCEP |
1 |
3.001741 |
0.272684 |
11.008 |
0.0001 |
CAN_X1 |
1 |
0.410169 |
0.076193 |
5.383 |
0.0001 |
CAN. X2 |
1 |
-0.390490 |
0.086275 |
-4.526 |
0.0004 |
CAN. X3 |
1 |
-0.462567 |
0.070169 |
-6.592 |
0.0001 |
c. Cross Model Correlation
Corr AUSTRIA BELGIUM CANADA
Breusch and Pagan (1980) diagonality LM test statistic for the first three countries yields XLM = T (j22 + r^ + r~22) = 2.77 which is asympoti - cally distributed as /2 under the null hypothesis. This does not reject the diagonality of the variance-covariance matrix across the three countries.
SAS PROGRAM
Data gasoline;
Input COUNTRY $ YEAR Y X1 X2 X3; CARDS;
Proc IML; use GASOLINE; read all into temp;
sur=temp [1:19,2:5] | | temp[20:38, 2:5] | | temp[39:57,2:5];
c={‘‘AUS_Y” “AUS_X1” “AUS. X2” “AUS. X3” “BELY” “BELX1" “BELX2"
“BELX3" “CAN_Y" “CAN. X1” “CAN. X2” “CAN. X3”};
create SUR_DATA from SUR [colname=c];
append from SUR;
proc syslin sur data=SUR_DATA;
AUSTRIA: model AUS_Y=AUS_X1 AUS. X2 AUS_X3;
BELGIUM: model BELY=BELX1 BELX2 BELX3; title ‘SUR MODEL WITH THE FIRST 2 COUNTRIES’; proc syslin sur data=SUR_DATA;
AUSTRIA: model AUS_Y=AUS_X1 AUS_X2 AUS_X3;
BELGIUM: model BELY=BELX1 BELX2 BELX3;
CANADA: model CAN_Y=CAN_X1 CAN_X2 CAN_X3; title ‘SUR MODEL WITH THE FIRST 3 COUNTRIES’; run;
10.13 Trace Minimization of Singular Systems with Cross-Equation Restrictions. This is based on Baltagi (1993).
3 3 T
a. Note that yit = 1, implies that ^ yi = 1, where yi = yit/T, for i =
i=i i=i t=i
T T T
1,2, 3.Thismeansthat J]xt(y3t-Уз) = - J2 xt(y2t-У2)-J2 xt(y1t—yi)
t=i t=i t=i
or b3 = —b2 — bi. This shows that the bi’s satisfy the adding up restriction "i + "2 + "з = 0.
b. Note also that "1 = "2 and "1 + "2 + "3 = 0 imply "3 = —2"i. If we ignore the first equation, and impose "1 = "2, we get
a2 |
C |
©2 |
|
аз |
|||
©3 |
|||
-1 |
t 0 X 0 t —2X |
which means that the OLS normal equations yield
TT
T&2 + " i ^ xt = ^2 y2t
t=i
T
Taз — 2" i ^ xt = ^2 y3t
t=i t=i
'2 X! Xt — 2'3^2 Xt C 5"1^2 x2 = ^2 Xty2t — 2^2 xty3t.
t=i t=i t=i t=i t=i
Substituting the expressions for a2 and cO3 from the first two equations into the third equation, we get "i = 0.2b2 — 0.4b3. Using bi + b2 + b3 = 0 from part (a), one gets "i = 0.4bi + 0.6b2.
c. Similarly, deleting the second equation and imposing "1 = "2 one gets
ai |
C |
©i |
|
аз |
|||
©3 |
|||
-1 |
Pi_ |
t 0 X 0 t —2X |
Forming the OLS normal equations and solving for " i, one gets "1 = 0.2bi — 0.4b3. Using b1 C b2 + b3 = 0 gives " 1 = 0.6b1 + 0.4b2.
d. Finally, deleting the third equation and imposing " = "2 one gets
Forming the OLS normal equations and solving for " 1 one gets " 1 = 0.5b1 + 0.5b2.
Therefore, the estimate of "1 is not invariant to the deleted equation. Also, this non-invariancy affects Zellner’s SUR estimation if the restricted least squares residuals are used rather than the unrestricted least squares residuals in estimating the variance covariance matrix of the disturbances. An alternative solution is given by Im (1994).
10.17 The SUR results are replicated using Stata below:
. sureg (Growth: dly = yrt gov m2y inf swo dtot f_pcy d80 d90) (Inequality: gih = yrt m2y civmlg mlgldc), corr
Seemingly unrelated regression
Equation |
Obs |
Parms |
RMSE |
“R-sq” |
chi2 |
P |
Growth |
119 |
9 |
2.313764 |
0.4047 |
80.36 |
0.0000 |
Inequality |
119 |
5 |
6.878804 |
0.4612 |
102.58 |
0.0000 |
Coef. |
Std. Err. |
z |
P>|z| |
[95% Conf. Interval] |
||
Growth yrt |
-.0497042 |
.1546178 |
-0.32 |
0.748 |
-.3527496 |
.2533412 |
gov |
-.0345058 |
.0354801 |
-0.97 |
0.331 |
-.1040455 |
.0350338 |
m2y |
.0084999 |
.0163819 |
0.52 |
0.604 |
-.023608 |
.0406078 |
inf |
-.0020648 |
.0013269 |
-1.56 |
0.120 |
-.0046655 |
.000536 |
swo |
3.263209 |
.60405 |
5.40 |
0.000 |
2.079292 |
4.447125 |
dtot |
17.74543 |
21.9798 |
0.81 |
0.419 |
-25.33419 |
60.82505 |
f-pcy |
-1.038173 |
.4884378 |
-2.13 |
0.034 |
-1.995494 |
-.0808529 |
d80 |
-1.615472 |
.5090782 |
-3.17 |
0.002 |
-2.613247 |
-.6176976 |
d90 |
-3.339514 |
.6063639 |
-5.51 |
0.000 |
-4.527965 |
-2.151063 |
_cons |
10.60415 |
3.471089 |
3.05 |
0.002 |
3.800944 |
17.40736 |
Inequality
Correlation matrix of residuals:
Growth Inequality Growth 1.0000 Inequality 0.0872 1.0000
Breusch-Pagan test of independence: chi2(1) = 0.905, Pr = 0.3415.
b. Note that the correlation among the residuals of the two equations is weak (0.0872) and the Breusch-Pagan test for diagonality of the variance - covariance matrix of the disturbances of the two equations is statistically insignificant, not rejecting zero correlation among the two equations.
References
Baltagi, B. H. (1993), “Trace Minimization of Singular Systems With Cross-Equation Restrictions,” Econometric Theory, Problem 93.2.4, 9: 314-315.
Im, Eric Iksoon (1994), “Trace Minimization of Singular Systems With CrossEquation Restrictions,” Econometric Theory, Solution 93.2.4, 10: 450.
Kmenta, J. (1986), Elements of Econometrics (Macmillan: New York).
Schmidt, P. (1977), “Estimation of Seemingly Unrelated Regressions With Unequal Numbers of Observations,” Journal of Econometrics, 5: 365-377.