Springer Texts in Business and Economics
Simple Versus Multiple Regression Coefficients. This is based on Baltagi (1987)
The OLS residuals from Yi = у + 82v2i + 83v3i + wi, say tVi, satisfy the
following conditions:
n n n
wі = 0 ^]iViv2i = 0 ^^wiV 3i = 0
i=i i=i i=i
with Yi = у + 82V2i + 83V3i + vi.
n
Multiply this last equation by v2i and sum, we get P Yiv2i = °2 P v? i +
i=i
"ols = Y ^VEv.2 = E Yix^]xi2 = Y WExi2.
i=1 i=1 i=1 i=1 i=1 i=1
b. Regressing a constant 1 on Xi we get
n n n
b = 'Y/ Ъ/Y Xi2 with residuals wi = 1 — I nX^ ^ XiM Xi i=1 i=1 i=1
nn
so that, regressing Yi on wi yields a = wiYi/ w2.
i=1 i=1
n _ _ n n nY EXi2-n^XiYi
But P wiYi = nY — nX £ XiYi/ P Xi2 = —i=^-5------------------------ ^------- and
i=1 i=1 i=1 P Xi2
i=1
_ n n 2 n
n 2 2 2nX X Xi n X Xi2-n2X2 n X Xi2
P w2 = n + ----------- ^ .
i=1 P Xi2 P Xi2 P Xi2 P Xi2
i = 1 i = 1 i = 1 i=1
xi2
i=1
n
X XiYi - nXY
a=4 = Y - " olsX
xi2
i=1
c. From part (a), var("ols) = a2/ ^2 = a2/ xi2 as it should be. From
i=1 i i=1
n
n a2 P X2
part (b), var (aols) = a2/ P w? = tt1 as it should be.