Springer Texts in Business and Economics

Multiple Regression Analysis

4.1 The regressions for parts (a), (b), (c), (d) and (e) are given below.

a. Regression of LNC on LNP and LNY Dependent Variable: LNC

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

2

0.50098

0.25049

9.378

0.0004

Error

43

1.14854

0.02671

C Total

45

1.64953

Root MSE

0.16343

R-square

0.3037

Dep Mean

4.84784

Adj R-sq

0.2713

C. V.

3.37125

Parameter Estimates

Parameter

Standard

T for HO:

Variable

DF

Estimate

Error Parameter=0

Prob>|T|

INTERCEP 1

4.299662

0.90892571

4.730

0.0001

LNP

1

-1.338335

0.32460147

-4.123

0.0002

LNY

1

0.172386

0.19675440

0.876

0.3858

Regression of LNC on LNP Dependent Variable: LNC

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

1

0.48048

0.48048

18.084

0.0001

Error

44

1.16905

0.02657

C Total

45

1.64953

Root MSE

0.16300 R-square

0.2913

Dep Mean

4.84784 Adj R-sq

0.2752

C. V.

3.36234

B. H. Baltagi, Solutions Manual for Econometrics, Springer Texts in Business and Economics, DOI 10.1007/978-3-642-54548-1—4, © Springer-Verlag Berlin Heidelberg 2015

Parameter

Standard

T for HO:

Variable

DF

Estimate

Error

Parameter=0

Prob>|T|

INTERCEP

1

5.094108

0.06269897

81.247

0.0001

LNP

1

-1.198316

0.28178857

-4.253

0.0001

c. Regression of LNY on

LNP

Dependent Variable: LNY

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob > F

Model

1

0.22075

0.22075

14.077

0.0005

Error

44

0.68997

0.01568

C Total

45

0.91072

Root MSE

0.12522

R-square

0.2424

Dep Mean

4.77546

Adj R-sq

0.2252

C. V.

2.62225

Parameter Estimates

Parameter

Standard

T for HO:

Variable

DF

Estimate

Error

Parameter=0

Prob>|T|

INTERCEP

1

4.608533

0.04816809

95.676

0.0001

LNP

1

0.812239

0.21648230

3.752

0.0005

d. Regression of LNC on the residuals of part (c). Dependent Variable: LNC

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

1

0.02050

0.02050

0.554

0.4607

Error

44

1.62903

0.03702

C Total

45

1.64953

RootMSE 0.19241 R-square 0.0124

DepMean 4.84784 Adj R-sq -0.0100

C. V. 3.96907

Variable

DF

Parameter

Estimate

Standard

Error

T for HO: Parameter=0

Prob>|T|

INTERCEP

1

4.847844

0.02836996

170.879

0.0001

RESID. C

1

0.172386

0.23164467

0.744

0.4607

e. Regression of Residuals from part (b) on those from part (c).

Dependent Variable: RESID. B

Analysis of Variance

Sum of

Mean

Source

DF

Squares

Square

F Value

Prob>F

Model

1

0.02050

0.02050

0.785

0.3803

Error

44

1.14854

0.02610

C Total

45

1.16905

Root MSE

0.16157

R-square

0.0175

Dep Mean

-0.00000

Adj R-sq

-0.0048

C. V.

-2.463347E16

Parameter Estimates

Parameter

Standard

T for HO:

Variable

DF

Estimate

Error

Parameter=0

Prob > |T|

INTERCEP

1

-6.84415 E-16

0.02382148

-0.000

1.0000

RESID. C

1

0.172386

0.19450570

0.886

0.3803

f. The multiple regression coefficient estimate of real income in part (a) is equal to the slope coefficient of the regressions in parts (d) and (e). This demonstrates the residualing out interpretation of multiple regression coefficients.

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.