Springer Texts in Business and Economics
Dependent Variable: LNRGDP
Analysis of Variance
Sumof |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value Prob > F |
|
Model |
1 |
53.88294 |
53.88294 |
535.903 |
0.0001 |
Error |
18 |
1.80983 |
0.10055 |
||
C Total |
19 |
55.69277 |
|||
RootMSE 0.31709 R-square 0.9675 DepMean 10.60225 Adj R-sq 0.9657 |
|||||
C. V. |
2.99078 |
||||
Parameter Estimates |
|||||
Parameter |
Standard |
T for HO: |
|||
Variable |
DF |
Estimate |
Error |
Parameter=0 |
Prob > |T| |
INTERCEP |
1 |
1.070317 |
0.41781436 |
2.562 |
0.0196 |
LNEN |
1 |
0.932534 |
0.04028297 |
23.150 |
0.0001 |
e. Log-log specification
Dependent Variable: LNEN1
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob > F |
Model |
1 |
59.94798 |
59.94798 |
535.903 |
0.0001 |
Error |
18 |
2.01354 |
0.11186 |
||
C Total |
19 |
61.96153 |
|||
Root MSE |
0.33446 |
R-square |
0.9675 |
||
DepMean 14.31589 |
Adj R-sq |
0.9657 |
|||
C. V. |
2.33628 |
Variable |
DF |
Parameter Estimate |
Standard Error |
T for HO: Parameter=0 |
Prob > |T| |
INTERCEP |
1 |
3.316057 |
0.48101294 |
6.894 |
0.0001 |
LNRGDP |
1 |
1.037499 |
0.04481721 |
23.150 |
0.0001 |
Linear Specificiation Dependent Variable: EN1
Analysis of Variance
Source |
DF |
Sum of Squares |
Mean Square |
F Value |
Prob > F |
Model |
1 |
6.7345506E14 |
6.7345506E14 |
386.28 |
0.0001 |
Error |
18 |
3.1381407E13 |
1.7434115E12 |
6 |
|
C Total |
19 |
7.0483646E14 |
Root MSE 1320383.09457 R-square 0.9555
Dep Mean 4607256.0000 Adj R-sq 0.9530
C. V. 28.65877
Parameter Estimates
|
Linear Specification before the multiplication by 60 Dependent Variable: EN
Analysis of Variance
Sum of |
Mean |
||||
Source |
DF |
Squares |
Square |
F Value |
Prob > F |
Model |
1 |
187070848717 |
187070848717 |
386.286 |
0.0001 |
Error |
18 |
8717057582.2 |
484280976.79 |
||
C Total |
19 |
195787906299 |
Root MSE 22006.38491 R-square 0.9555
Dep Mean 76787.60000 Adj R-sq 0.9530
C. V. 28.6587
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -3169.188324 6384.6848326 -0.496 0.6256
RGDP 1 0.779324 0.03965186 19.654 0.0001
What happens when we multiply our energy variable by 60? For the linear model specification, both a * and " * are multiplied by 60, their standard errors are also multiplied by 60 and their t-statistics are the same.
For the log-log model specification, " is the same, but a is equal to the old a + log 60. The intercept therefore is affected but not the slope. Its standard error is the same, but its t-statistic is changed.
4000000
14
g. Plot of residuals for both linear and log-log models SAS PROGRAM
Data Rawdata;
Input Country $ RGDP EN;
Cards;
Data Energy; Set Rawdata;
LNRGDP=log (RGDP); LNEN=log(EN);
EN1=EN*60; LNEN1=log(EN1);
Proc reg data=energy; Model LNRGDP=LNEN;
Proc reg data=energy; Model LNEN1=LNRGDP/CLM, CLI;
Output out=OUT1 R=LN_RESID;
Proc reg data=energy; Model EN1=RGDP;
Output out=OUT2 R=RESID;
Proc reg data=energy; Model EN=RGDP; data Resid; set outl (keep=lnrgdp ln_resid);
set out2(keep=rgdp resid);
Proc plot data=resid vpercent=60 hpercent=85;
Plot ln_resid*lnrgdp=‘*’;
Plot resid*rgdp=‘*’; run;