Springer Texts in Business and Economics

The Best Predictor

a. The problem is to minimize E[Y — h(X)]2 with respect to h(X). Add and subtract E(Y/X) to get

E{[Y — E(Y/X)] + [E(Y/X) — h(X)]}2

= E[Y — E(Y/X)]2 + E[E(Y/X) — h(X)]2

and the cross-product term E[Y — E(Y/X)] [E(Y/X) — h(X)] is zero because of the law of iterated expectations, see the Appendix to Chapter 2 Amemiya (1994). In fact, this says that expectations can be written as

E = ExEy/x

and the cross-product term given above EY/X [Y—E(Y/X)] [E(Y/X) — h(X)] is clearly zero. Hence, E[Y — h(X)]2 is expressed as the sum of two positive terms. The first term is not affected by our choice of h(X). The second term however is zero for h(X) = E(Y/X). Clearly, this is the best predictor of Y based on X.

b. In the Appendix to Chapter 2, we considered the bivariate Normal distri­bution and showed that E(Y/X) = p, Y + p^ (X — p, X). In part (a), we showed that this is the best predictor of Y based on X. But, in this case, this is exactly the form for the best linear predictor of Y based on X derived in problem 2.16. Hence, for the bivariate Normal density, the best predictor is identical to the best linear predictor of Y based on X.

References

Amemiya, T. (1994), Introduction to Statistics and Econometrics (Harvard Univer­sity Press: Cambridge).

Baltagi, B. H. (1994), “The Wald, LR, and LM Inequality”, Econometric Theory, Problem 94.1.2, 10: 223-224.

Freund, J. E. (1992), Mathematical Statistics (Prentice-Hall: New Jersey).

CHAPTER 3

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.