Springer Texts in Business and Economics

The Exponential Distribution

a. Using the MGF for the exponential distribution derived in problem 2.14e, we get

Подпись: Mx(t)1

(1 — 0t).

Differentiating with respect to t yields

O

Подпись: (1 - Ot)2MX(t) =

Therefore

MX0(O) = O = E(X).

Подпись: MXX (t) =Differentiating MX(t) with respect to t yields 2O2 (1 - Ot) 2O2

(1 - Ot)4 (1 - Ot)3'

Therefore

MXX (0) = 2O2 = E(X2).

Hence

var(X) = E(X2) - (E(X))2 = 2™2 - ™2 = ™2.

b. The likelihood function is given by

n

_ / 1 Y - P Xi/O

L (O)= 0e 'd1

image065

so that

n

V X'

э logL (O) - n = 0

@O O C O2

solving for O one gets

n

Xi - nO D 0

i=1

so that

Omle = X.

c. The method of moments equates E(X) = X. In this case, E(X) = O, hence O = X is the same as MLE.

n

d. E(X) = E(Xi)/n = n0/n = 0. Hence, X is unbiased for 0. Also,

i=1

var(X) = var(X)/n = 02/n which goes to zero as n! 1. Hence, the sufficient condition for Xto be consistent for 0 is satisfied.

e.

Подпись: f (Xi,..,Xn; 0) Подпись: 1 0 Подпись: n e image069 image070 Подпись: n Подпись: h(X; 0)g(Xi,..., Xn)

The joint p. d.f. is given by

where h(X; 0) = e-nX/e (1)n and g(X1,... ,Xn) = 1 independent of 0 in form and domain. Hence, by the factorization theorem, X is a sufficient statistic for 0.

f. logf(X; 0) = - log 0 - X and

9 logf(X; 0) -1 i X X - 0

90 = T + 02 = 02

92 logf(X; 0) 1 2X0 0 - 2X

90 = 02 - “0^ = 03

The Cramer-Rao lower bound for any unbiased estimator 0 of 0 is given by

Подпись: 0 >Подпись: var-1 -03 _ 02

nE ^ 92 logf(X;0)^ nE (0 - 2X) _ n.

But var(X) = 02/n, see part (d). Hence, X attains the Cramer-Rao lower bound.

g.

image075 Подпись: < 0.05 is given by

The likelihood ratio is given by

- £ X/2

2n e ‘=1 < k inside C.

Подпись: n log2 Подпись: E X/2 Л=1 Подпись: < к0

Taking logarithms of both sides and rearranging terms, we get

or

n

EXi > K

i=1

where K is determined by making the size of C = a < 0.05. In this case,

n

^2 Xi is distributed as a Gamma p. d.f. with " = 0 and a = n. Under

i=i

Ho; 0 = 1. Therefore,

n

Xt ~ Gamma(a = n, = 1/.

i=i

Hence, Pr[Gamma(a = n, " = 1/ > K] < 0.05

K should be determined from the integral Л щ/xn-1e-x dx = 0.05 for n = 20.

h. The likelihood ratio test is

Подпись: n - P Xi e iD L(1/ L(X/ '

so that n

Подпись: LR = -2 logL(1) + 2 log L(X /2J2 Xi - 2nlogX — 2n.

i=1

In this case,

Подпись: nn 92 logL(0/ 2 Xi n i-1 n0 — 2^2 Xi i=1 @02 02 03 03 C (0/

Подпись: n 02.

Подпись: 92'nL (0/ Э02
Подпись: I(™/ = -E

and

The Wald statistic is based upon

Подпись: W = (X-Подпись: (X— 1f I (0ml^ = (^^— 02 X'2 _n_

X2

using the fact that 0mle = Xi. The LM statistic is based upon LM = S2(1/I-1(D = Xi — nj І = n (X — 1)2 .

All three test statistics are based upon |X — 11 > k and, for finite n, the same

n

exact critical value could be obtained using the fact that Xi is Gamma

i=1

(a = n, and " = 1) under Ho, see part (g).

Добавить комментарий

Springer Texts in Business and Economics

The General Linear Model: The Basics

7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …

Regression Diagnostics and Specification Tests

8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …

Generalized Least Squares

9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.