Springer Texts in Business and Economics
Recursive Residuals
In Section 8.1, we showed that the least squares residuals are heteroskedastic with non-zero covariances, even when the true disturbances have a scalar covariance matrix. This section studies recursive residuals which are a set of linear unbiased residuals with a scalar covariance matrix. They are independent and identically distributed when the true disturbances themselves are independent and identically distributed.2 These residuals are natural in time-series regressions and can be constructed as follows:
1. Choose the first t > k observations and compute f3t = (X'tXt)-1X'tYt where Xt denotes the t x k matrix of t observations on k variables and Yt' = (y1,...,yt). The recursive residuals are basically standardized one-step ahead forecast residuals:
Table 8.2 Diagnostic Statistics for the Cigarettes Example
OBS
|
STATE
|
LNC
|
LNP
|
LNY
|
PREDICTED
|
e
|
e
|
e*
|
Cook's D
|
Leverage
|
DFFITS
|
COVRATIO
|
1
|
AL
|
4.96213
|
0.20487
|
4.64039
|
4.8254
|
0.1367
|
0.857
|
0.8546
|
0.012
|
0.0480
|
0.1919
|
1.0704
|
2
|
AZ
|
4.66312
|
0.16640
|
4.68389
|
4.8844
|
-0.2213
|
-1.376
|
-1.3906
|
0.021
|
0.0315
|
-0.2508
|
0.9681
|
3
|
AR
|
5.10709
|
0.23406
|
4.59435
|
4.7784
|
0.3287
|
2.102
|
2.1932
|
0.136
|
0.0847
|
0.6670
|
0.8469
|
4
|
CA
|
4.50449
|
0.36399
|
4.88147
|
4.6540
|
-0.1495
|
-0.963
|
-0.9623
|
0.033
|
0.0975
|
-0.3164
|
1.1138
|
5
|
CT
|
4.66983
|
0.32149
|
5.09472
|
4.7477
|
-0.0778
|
-0.512
|
-0.5077
|
0.014
|
0.1354
|
-0.2009
|
1.2186
|
6
|
DE
|
5.04705
|
0.21929
|
4.87087
|
4.8458
|
0.2012
|
1.252
|
1.2602
|
0.018
|
0.0326
|
0.2313
|
0.9924
|
7
|
DC
|
4.65637
|
0.28946
|
5.05960
|
4.7845
|
-0.1281
|
-0.831
|
-0.8280
|
0.029
|
0.1104
|
-0.2917
|
1.1491
|
8
|
FL
|
4.80081
|
0.28733
|
4.81155
|
4.7446
|
0.0562
|
0.352
|
0.3482
|
0.002
|
0.0431
|
0.0739
|
1.1118
|
9
|
GA
|
4.97974
|
0.12826
|
4.73299
|
4.9439
|
0.0358
|
0.224
|
0.2213
|
0.001
|
0.0402
|
0.0453
|
1.1142
|
10
|
ID
|
4.74902
|
0.17541
|
4.64307
|
4.8653
|
-0.1163
|
-0.727
|
-0.7226
|
0.008
|
0.0413
|
-0.1500
|
1.0787
|
11
|
IL
|
4.81445
|
0.24806
|
4.90387
|
4.8130
|
0.0014
|
0.009
|
0.0087
|
0.000
|
0.0399
|
0.0018
|
1.1178
|
12
|
IN
|
5.11129
|
0.08992
|
4.72916
|
4.9946
|
0.1167
|
0.739
|
0.7347
|
0.013
|
0.0650
|
0.1936
|
1.1046
|
13
|
IA
|
4.80857
|
0.24081
|
4.74211
|
4.7949
|
0.0137
|
0.085
|
0.0843
|
0.000
|
0.0310
|
0.0151
|
1.1070
|
14
|
KS
|
4.79263
|
0.21642
|
4.79613
|
4.8368
|
-0.0442
|
-0.273
|
-0.2704
|
0.001
|
0.0223
|
-0.0408
|
1.0919
|
15
|
KY
|
5.37906
|
-0.03260
|
4.64937
|
5.1448
|
0.2343
|
1.600
|
1.6311
|
0.210
|
0.1977
|
0.8098
|
1.1126
|
16
|
LA
|
4.98602
|
0.23856
|
4.61461
|
4.7759
|
0.2101
|
1.338
|
1.3504
|
0.049
|
0.0761
|
0.3875
|
1.0224
|
17
|
ME
|
4.98722
|
0.29106
|
4.75501
|
4.7298
|
0.2574
|
1.620
|
1.6527
|
0.051
|
0.0553
|
0.4000
|
0.9403
|
18
|
MD
|
4.77751
|
0.12575
|
4.94692
|
4.9841
|
-0.2066
|
-1.349
|
-1.3624
|
0.084
|
0.1216
|
-0.5070
|
1.0731
|
19
|
MA
|
4.73877
|
0.22613
|
4.99998
|
4.8590
|
-0.1202
|
-0.769
|
-0.7653
|
0.018
|
0.0856
|
-0.2341
|
1.1258
|
20
|
MI
|
4.94744
|
0.23067
|
4.80620
|
4.8195
|
0.1280
|
0.792
|
0.7890
|
0.005
|
0.0238
|
0.1232
|
1.0518
|
21
|
MN
|
4.69589
|
0.34297
|
4.81207
|
4.6702
|
0.0257
|
0.165
|
0.1627
|
0.001
|
0.0864
|
0.0500
|
1.1724
|
22
|
MS
|
4.93990
|
0.13638
|
4.52938
|
4.8979
|
0.0420
|
0.269
|
0.2660
|
0.002
|
0.0883
|
0.0828
|
1.1712
|
23
|
MO
|
5.06430
|
0.08731
|
4.78189
|
5.0071
|
0.0572
|
0.364
|
0.3607
|
0.004
|
0.0787
|
0.1054
|
1.1541
|
24
|
MT
|
4.73313
|
0.15303
|
4.70417
|
4.9058
|
-0.1727
|
-1.073
|
-1.0753
|
0.012
|
0.0312
|
-0.1928
|
1.0210
|
25
|
NE
|
4.77558
|
0.18907
|
4.79671
|
4.8735
|
-0.0979
|
-0.607
|
-0.6021
|
0.003
|
0.0243
|
-0.0950
|
1.0719
|
26
|
NV
|
4.96642
|
0.32304
|
4.83816
|
4.7014
|
0.2651
|
1.677
|
1.7143
|
0.065
|
0.0646
|
0.4504
|
0.9366
|
27
|
NH
|
5.10990
|
0.15852
|
5.00319
|
4.9500
|
0.1599
|
1.050
|
1.0508
|
0.055
|
0.1308
|
0.4076
|
1.1422
|
28
|
NJ
|
4.70633
|
0.30901
|
5.10268
|
4.7657
|
-0.0594
|
-0.392
|
-0.3879
|
0.008
|
0.1394
|
-0.1562
|
1.2337
|
29
|
NM
|
4.58107
|
0.16458
|
4.58202
|
4.8693
|
-0.2882
|
-1.823
|
-1.8752
|
0.076
|
0.0639
|
-0.4901
|
0.9007
|
30
|
NY
|
4.66496
|
0.34701
|
4.96075
|
4.6904
|
-0.0254
|
-0.163
|
-0.1613
|
0.001
|
0.0888
|
-0.0503
|
1.1755
|
31
|
ND
|
4.58237
|
0.18197
|
4.69163
|
4.8649
|
-0.2825
|
-1.755
|
-1.7999
|
0.031
|
0.0295
|
-0.3136
|
0.8848
|
32
|
OH
|
4.97952
|
0.12889
|
4.75875
|
4.9475
|
0.0320
|
0.200
|
0.1979
|
0.001
|
0.0423
|
0.0416
|
1.1174
|
33
|
OK
|
4.72720
|
0.19554
|
4.62730
|
4.8356
|
-0.1084
|
-0.681
|
-0.6766
|
0.008
|
0.0505
|
-0.1560
|
1.0940
|
34
|
PA
|
4.80363
|
0.22784
|
4.83516
|
4.8282
|
-0.0246
|
-0.153
|
-0.1509
|
0.000
|
0.0257
|
-0.0245
|
1.0997
|
35
|
RI
|
4.84693
|
0.30324
|
4.84670
|
4.7293
|
0.1176
|
0.738
|
0.7344
|
0.010
|
0.0504
|
0.1692
|
1.0876
|
36
|
SC
|
5.07801
|
0.07944
|
4.62549
|
4.9907
|
0.0873
|
0.555
|
0.5501
|
0.008
|
0.0725
|
0.1538
|
1.1324
|
37
|
SD
|
4.81545
|
0.13139
|
4.67747
|
4.9301
|
-0.1147
|
-0.716
|
-0.7122
|
0.007
|
0.0402
|
-0.1458
|
1.0786
|
38
|
TN
|
5.04939
|
0.15547
|
4.72525
|
4.9062
|
0.1432
|
0.890
|
0.8874
|
0.008
|
0.0294
|
0.1543
|
1.0457
|
39
|
TX
|
4.65398
|
0.28196
|
4.73437
|
4.7384
|
-0.0845
|
-0.532
|
-0.5271
|
0.005
|
0.0546
|
-0.1267
|
1.1129
|
40
|
UT
|
4.40859
|
0.19260
|
4.55586
|
4.8273
|
-0.4187
|
-2.679
|
-2.9008
|
0.224
|
0.0856
|
-0.8876
|
0.6786
|
41
|
VT
|
5.08799
|
0.18018
|
4.77578
|
4.8818
|
0.2062
|
1.277
|
1.2869
|
0.014
|
0.0243
|
0.2031
|
0.9794
|
42
|
VA
|
4.93065
|
0.11818
|
4.85490
|
4.9784
|
-0.0478
|
-0.304
|
-0.3010
|
0.003
|
0.0773
|
-0.0871
|
1.1556
|
43
|
WA
|
4.66134
|
0.35053
|
4.85645
|
4.6677
|
-0.0064
|
-0.041
|
-0.0404
|
0.000
|
0.0866
|
-0.0124
|
1.1747
|
44
|
WV
|
4.82454
|
0.12008
|
4.56859
|
4.9265
|
-0.1020
|
-0.647
|
-0.6429
|
0.011
|
0.0709
|
-0.1777
|
1.1216
|
45
|
WI
|
4.83026
|
0.22954
|
4.75826
|
4.8127
|
0.0175
|
0.109
|
0.1075
|
0.000
|
0.0254
|
0.0174
|
1.1002
|
46
|
WY
|
5.00087
|
0.10029
|
4.71169
|
4.9777
|
0.0232
|
0.146
|
0.1444
|
0.000
|
0.0555
|
0.0350
|
1.1345
|
|
Table 8.3 Regression of Real Per-Capita Consumption of Cigarettes
Dep
Obs
|
Var
LNC
|
Predict
Value
|
Std Err Predict
|
Lower95%
Mean
|
Upper95%
Mean
|
Lower95%
Predict
|
Upper95%
Predict
|
Std Err Residual
|
Student
Residual
|
Residual -
|
to
1
о
|
2 Cook’s D
|
і
|
4.9621
|
4.8254
|
0.0.36
|
4.75.32
|
4.8976
|
4.4880
|
5.1628
|
0.1.367
|
0.159
|
0.857
|
|
к
|
0.012
|
2
|
4.6631
|
4.8844
|
0.029
|
4.8259
|
4.9429
|
4.5497
|
5.2191
|
-0.221.3
|
0.161
|
-1.376
|
к к
|
|
0.021
|
3
|
5.1071
|
4.7784
|
0.048
|
4.6825
|
4.874.3
|
4.4.351
|
5.1217
|
0.3287
|
0.156
|
2.102
|
|
ккк к
|
0.1.36
|
4
|
4.5045
|
4.6540
|
0.051
|
4.5511
|
4.7570
|
4.3087
|
4.999.3
|
-0.1495
|
0.155
|
-0.96.3
|
к
|
|
0.0.33
|
5
|
4.6698
|
4.7477
|
0.060
|
4.6264
|
4.8689
|
4.3965
|
5.0989
|
-0.0778
|
0.152
|
-0.512
|
к
|
|
0.014
|
6
|
5.0471
|
4.8458
|
0.0.30
|
4.786.3
|
4.905.3
|
4.5109
|
5.1808
|
0.2012
|
0.161
|
1.252
|
|
к к
|
0.018
|
7
|
4.6564
|
4.7845
|
0.054
|
4.6750
|
4.8940
|
4.4.372
|
5.1.318
|
-0.1281
|
0.154
|
-0.8.31
|
к
|
|
0.029
|
8
|
4.8008
|
4.7446
|
0.0.34
|
4.6761
|
4.81.30
|
4.4079
|
5.0812
|
0.0562
|
0.160
|
0.352
|
|
|
0.002
|
9
|
4.9797
|
4.94.39
|
0.0.33
|
4.8778
|
5.0100
|
4.6078
|
5.2801
|
0.0.358
|
0.160
|
0.224
|
|
|
0.001
|
10
|
4.7490
|
4.865.3
|
0.0.33
|
4.798.3
|
4.9.32.3
|
4.5290
|
5.2016
|
-0.116.3
|
0.160
|
-0.727
|
к
|
|
0.008
|
11
|
4.8145
|
4.81.30
|
0.0.33
|
4.7472
|
4.8789
|
4.4769
|
5.1491
|
0.00142
|
0.160
|
0.009
|
|
|
0.000
|
12
|
5.111.3
|
4.9946
|
0.042
|
4.9106
|
5.0786
|
4.6544
|
5.3.347
|
0.1167
|
0.158
|
0.7.39
|
|
к
|
0.01.3
|
13
|
4.8086
|
4.7949
|
0.029
|
4.7.368
|
4.8529
|
4.4602
|
5.1295
|
0.01.37
|
0.161
|
0.085
|
|
|
0.000
|
14
|
4.7926
|
4.8.368
|
0.024
|
4.7876
|
4.8860
|
4.50.36
|
5.1701
|
-0.0442
|
0.162
|
-0.27.3
|
|
|
0.001
|
15
|
5.3791
|
5.1448
|
0.07.3
|
4.9982
|
5.291.3
|
4.7841
|
5.5055
|
0.2.34.3
|
0.146
|
1.600
|
|
ккк
|
0.210
|
16
|
4.9860
|
4.7759
|
0.045
|
4.6850
|
4.8668
|
4.4.340
|
5.1178
|
0.2101
|
0.157
|
1.3.38
|
|
к к
|
0.049
|
17
|
4.9872
|
4.7298
|
0.0.38
|
4.652.3
|
4.8074
|
4.3912
|
5.0684
|
0.2574
|
0.159
|
1.620
|
|
ккк
|
0.051
|
18
|
4.7775
|
4.9841
|
0.057
|
4.8692
|
5.0991
|
4.6.351
|
5.3.332
|
-0.2066
|
0.15.3
|
-1.349
|
к к
|
|
0.084
|
19
|
4.7.388
|
4.8590
|
0.048
|
4.7625
|
4.9554
|
4.5155
|
5.2024
|
-0.1202
|
0.156
|
-0.769
|
к
|
|
0.018
|
20
|
4.9474
|
4.8195
|
0.025
|
4.7686
|
4.870.3
|
4.4860
|
5.15.30
|
0.1280
|
0.161
|
0.792
|
|
к
|
0.005
|
21
|
4.6959
|
4.6702
|
0.048
|
4.57.3.3
|
4.7671
|
4.3267
|
5.01.37
|
0.0257
|
0.156
|
0.165
|
|
|
0.001
|
22
|
4.9.399
|
4.8979
|
0.049
|
4.8000
|
4.9959
|
4.5541
|
5.2418
|
0.0420
|
0.156
|
0.269
|
|
|
0.002
|
23
|
5.064.3
|
5.0071
|
0.046
|
4.9147
|
5.0996
|
4.6648
|
5.3495
|
0.0572
|
0.157
|
0.364
|
|
|
0.004
|
24
|
4.7.3.31
|
4.9058
|
0.029
|
4.8476
|
4.9640
|
4.5711
|
5.2405
|
-0.1727
|
0.161
|
-1.07.3
|
к к
|
|
0.012
|
25
|
4.7756
|
4.87.35
|
0.025
|
4.8221
|
4.9249
|
4.5.399
|
5.2071
|
-0.0979
|
0.161
|
-0.607
|
к
|
|
0.00.3
|
26
|
4.9664
|
4.7014
|
0.042
|
4.6176
|
4.7851
|
4.361.3
|
5.0414
|
0.2651
|
0.158
|
1.677
|
|
ккк
|
0.065
|
27
|
5.1099
|
4.9500
|
0.059
|
4.8.308
|
5.0692
|
4.5995
|
5.3005
|
0.1599
|
0.152
|
1.050
|
|
к к
|
0.055
|
28
|
4.706.3
|
4.7657
|
0.061
|
4.6427
|
4.8888
|
4.41.39
|
5.1176
|
-0.0594
|
0.152
|
-0.392
|
|
|
0.008
|
29
|
4.5811
|
4.869.3
|
0.041
|
4.7859
|
4.9526
|
4.529.3
|
5.2092
|
-0.2882
|
0.158
|
-1.82.3
|
к к к
|
|
0.076
|
30
|
4.6650
|
4.6904
|
0.049
|
4.5922
|
4.7886
|
4.3465
|
5.0.34.3
|
-0.0254
|
0.156
|
-0.16.3
|
|
|
0.001
|
31
|
4.5824
|
4.8649
|
0.028
|
4.808.3
|
4.9215
|
4.5.305
|
5.199.3
|
-0.2825
|
0.161
|
-1.755
|
к к к
|
|
0.0.31
|
32
|
4.9795
|
4.9475
|
0.0.34
|
4.8797
|
5.015.3
|
4.6110
|
5.2840
|
0.0.320
|
0.160
|
0.200
|
|
|
0.001
|
33
|
4.7272
|
4.8.356
|
0.0.37
|
4.7616
|
4.9097
|
4.4978
|
5.17.35
|
-0.1084
|
0.159
|
-0.681
|
к
|
|
0.008
|
34
|
4.80.36
|
4.8282
|
0.026
|
4.7754
|
4.8811
|
4.4944
|
5.1621
|
-0.0246
|
0.161
|
-0.15.3
|
|
|
0.000
|
35
|
4.8469
|
4.729.3
|
0.0.37
|
4.655.3
|
4.80.3.3
|
4.3915
|
5.0671
|
0.1176
|
0.159
|
0.7.38
|
|
к
|
0.010
|
36
|
5.0780
|
4.9907
|
0.044
|
4.9020
|
5.0795
|
4.6494
|
5.3.320
|
0.087.3
|
0.157
|
0.555
|
|
к
|
0.008
|
37
|
4.8155
|
4.9.301
|
0.0.33
|
4.8640
|
4.996.3
|
4.5940
|
5.266.3
|
-0.1147
|
0.160
|
-0.716
|
к
|
|
0.007
|
38
|
5.0494
|
4.9062
|
0.028
|
4.8497
|
4.9626
|
4.5718
|
5.2406
|
0.14.32
|
0.161
|
0.890
|
|
к
|
0.008
|
39
|
4.6540
|
4.7.384
|
0.0.38
|
4.6614
|
4.8155
|
4.4000
|
5.0769
|
-0.0845
|
0.159
|
-0.5.32
|
к
|
|
0.005
|
40
|
4.4086
|
4.827.3
|
0.048
|
4.7.308
|
4.92.37
|
4.48.39
|
5.1707
|
-0.4187
|
0.156
|
-2.679
|
к к ккк
|
|
0.224
|
41
|
5.0880
|
4.8818
|
0.025
|
4.8.304
|
4.9.3.32
|
4.5482
|
5.2154
|
0.2062
|
0.161
|
1.277
|
|
к к
|
0.014
|
42
|
4.9.307
|
4.9784
|
0.045
|
4.8868
|
5.0701
|
4.6.36.3
|
5.3205
|
-0.0478
|
0.157
|
-0.304
|
|
|
0.00.3
|
43
|
4.661.3
|
4.6677
|
0.048
|
4.5708
|
4.7647
|
4.3242
|
5.011.3
|
-0.006.38
|
0.156
|
-0.041
|
|
|
0.000
|
44
|
4.8245
|
4.9265
|
0.044
|
4.8.387
|
5.014.3
|
4.5854
|
5.2676
|
-0.1020
|
0.158
|
-0.647
|
к
|
|
0.011
|
45
|
4.8.30.3
|
4.8127
|
0.026
|
4.7602
|
4.865.3
|
4.4790
|
5.1465
|
0.0175
|
0.161
|
0.109
|
|
|
0.000
|
46
|
5.0009
|
4.9777
|
0.0.39
|
4.9000
|
5.055.3
|
4.6.391
|
5.316.3
|
0.02.32
|
0.159
|
0.146
|
|
|
0.000
|
Sum of Residuals 0
Sum of Squared Residuals 1.1485
Predicted Resid SS (Press) 1.3406
|
|
2. Add the (t + 1)-th observation to the data and obtain i3t+l Compute wt+2.
3.
Repeat step 2, adding one observation at a time. In time-series regressions, one usually starts with the first ^-observations and obtain (T — k) forward recursive residuals. These recursive residuals can be computed using the updating formula given in (8.11) with A = (X'tXt) and a = —b = x't+i. Therefore,
and only (XtX^ i have to be computed. Also,
&+1 = & + (XtXt) ixt+i(yt+i — x't+iPt)//t+i where /t+i = 1 + xt+i(Xt/Xt)-ixt+i, see problem 13.
Alternatively, one can compute these residuals by regressing Yt+i on Xt+i and dt+i where dt+i = 1 for the (t + 1)-th observation, and zero otherwise, see equation (8.5). The estimated coefficient of dt+i is the numerator of wt+i. The standard error of this estimate is s^ times the denominator of wt+i, where s^ is the standard error of this regression. Hence, wt+i can be retrieved as s^ multiplied by the t-statistic corresponding to dt+i. This computation has to be performed sequentially, in each case generating the corresponding recursive residual. This may be computationally inefficient, but it is simple to generate using regression packages.
It is obvious from (8.30) that if ut ~ IIN(0, a2), then wt+i has zero mean and var(wt+i) = a2. Furthermore, wt+i is linear in the y’s. Therefore, it is normally distributed. It remains to show that the recursive residuals are independent. Given normality, it is sufficient to show that
cov(wt+i, ws+i) = 0 for t = s; t, s = k,...,T — 1
This is left as an exercise for the reader, see problem 13.
Alternatively, one can express the T — k vector of recursive residuals as w = Cy where C is of dimension (T — k) x T as follows:
xtT (XT— iXT — i) iX'T-i i
V fT V fT
Problem 14 asks the reader to verify that w = Cy, using (8.30). Also, that the matrix C satisfies the following properties:
(i) CX = 0 (ii) CCC = It-k (iii) C'C = Px
This means that the recursive residuals w are (LUS) linear in y, unbiased with mean zero and have a scalar variance-covariance matrix: var(w) = CE(uu')C' = а2Іт-к. Property (iii) also
means that w'w = y'C'Cy = y'PxУ = e'e. This means that the sum of squares of (T — k) recursive residuals is equal to the sum of squares of T least squares residuals. One can also show from (8.32) that
RSSt+i = RSSt + w2t+l for t = k,...,T — 1 (8.36)
where RSSt = (Yt — Xtf3t)'(Yt — Xt/3t), see problem 14. Note that for t = k; RSS = 0, since with k observations one gets a perfect fit and zero residuals. Therefore
RSSt = £Tt=k+l wt = £T=1 e2 (8.37)
7.1 Invariance of the fitted values and residuals to non-singular transformations of the independent variables. The regression model in (7.1) can be written as y = XCC-1" + u where …
8.1 Since H = PX is idempotent, it is positive semi-definite with b0H b > 0 for any arbitrary vector b. Specifically, for b0 = (1,0,.., 0/ we get hn …
9.1 GLS Is More Efficient than OLS. a. Equation (7.5) of Chap. 7 gives "ois = " + (X'X)-1X'u so that E("ois) = " as long as X and u …