Introduction to the Mathematical and Statistical Foundations of Econometrics
Appendix IV — Tables of Critical Values
Table IV1: Critical values of the two-sided tk test at the 5% and 10% significance levels
k |
5% |
10% |
k |
5% |
10% |
k |
5% |
10% |
і |
12.704 |
6.313 |
11 |
2.201 |
1.796 |
21 |
2.080 |
1.721 |
2 |
4.303 |
2.920 |
12 |
2.179 |
1.782 |
22 |
2.074 |
1.717 |
3 |
3.183 |
2.353 |
13 |
2.160 |
1.771 |
23 |
2.069 |
1.714 |
4 |
2.776 |
2.132 |
14 |
2.145 |
1.761 |
24 |
2.064 |
1.711 |
5 |
2.571 |
2.015 |
15 |
2.131 |
1.753 |
25 |
2.059 |
1.708 |
6 |
2.447 |
1.943 |
16 |
2.120 |
1.746 |
26 |
2.056 |
1.706 |
7 |
2.365 |
1.895 |
17 |
2.110 |
1.740 |
27 |
2.052 |
1.703 |
8 |
2.306 |
1.859 |
18 |
2.101 |
1.734 |
28 |
2.048 |
1.701 |
9 |
2.262 |
1.833 |
19 |
2.093 |
1.729 |
29 |
2.045 |
1.699 |
10 |
2.228 |
1.813 |
20 |
2.086 |
1.725 |
30 |
2.042 |
1.697 |
Table IV2: Critical values of the right-sided tk test at the 5% and 10% significance levels
k |
5% |
10% |
k |
5% |
10% |
k |
5% |
10% |
1 |
6.313 |
3.078 |
11 |
1.796 |
1.363 |
21 |
1.721 |
1.323 |
2 |
2.920 |
1.886 |
12 |
1.782 |
1.356 |
22 |
1.717 |
1.321 |
3 |
2.353 |
1.638 |
13 |
1.771 |
1.350 |
23 |
1.714 |
1.319 |
4 |
2.132 |
1.533 |
14 |
1.761 |
1.345 |
24 |
1.711 |
1.318 |
5 |
2.015 |
1.476 |
15 |
1.753 |
1.341 |
25 |
1.708 |
1.316 |
6 |
1.943 |
1.440 |
16 |
1.746 |
1.337 |
26 |
1.706 |
1.315 |
7 |
1.895 |
1.415 |
17 |
1.740 |
1.333 |
27 |
1.703 |
1.314 |
8 |
1.859 |
1.397 |
18 |
1.734 |
1.330 |
28 |
1.701 |
1.313 |
9 |
1.833 |
1.383 |
19 |
1.729 |
1.328 |
29 |
1.699 |
1.311 |
10 |
1.813 |
1.372 |
20 |
1.725 |
1.325 |
30 |
1.697 |
1.310 |
Note: For k >30 the critical values of the tk test are approximately equal to the critical values of the standard normal test in Table IV3. |
Table IV3: Critical values of the N(0, 1) test
|
Table IV.4: Critical values of the test at the 5% and 10% significance levels
Note: Because the Xk test is used to test parameter restrictions with the degrees of freedom k equal to the number of restrictions, it is unlikely that you will need the critical values of the x2 test for k> 30. |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
mk |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
1 |
39.9 |
49.5 |
53.6 |
55.8 |
57.2 |
58.2 |
58.9 |
59.4 |
59.8 |
60.2 |
60.5 |
60.7 |
60.9 |
61.1 |
61.2 |
2 |
8.53 |
9.00 |
9.16 |
9.24 |
9.29 |
9.33 |
9.35 |
9.37 |
9.38 |
9.39 |
9.40 |
9.41 |
9.41 |
9.42 |
9.42 |
3 |
5.54 |
5.46 |
5.39 |
5.34 |
5.31 |
5.28 |
5.27 |
5.25 |
5.24 |
5.23 |
5.22 |
5.22 |
5.21 |
5.20 |
5.20 |
4 |
4.54 |
4.32 |
4.19 |
4.11 |
4.05 |
4.01 |
3.98 |
3.95 |
3.94 |
3.92 |
3.91 |
3.90 |
3.89 |
3.88 |
3.87 |
5 |
4.06 |
3.78 |
3.62 |
3.52 |
3.45 |
3.40 |
3.37 |
3.34 |
3.32 |
3.30 |
3.28 |
3.27 |
3.26 |
3.25 |
3.24 |
6 |
3.78 |
3.46 |
3.29 |
3.18 |
3.11 |
3.05 |
3.01 |
2.98 |
2.96 |
2.94 |
2.92 |
2.90 |
2.89 |
2.88 |
2.87 |
7 |
3.59 |
3.26 |
3.07 |
2.96 |
2.88 |
2.83 |
2.78 |
2.75 |
2.72 |
2.70 |
2.68 |
2.67 |
2.65 |
2.64 |
2.63 |
8 |
3.46 |
3.11 |
2.92 |
2.81 |
2.73 |
2.67 |
2.62 |
2.59 |
2.56 |
2.54 |
2.52 |
2.50 |
2.49 |
2.48 |
2.46 |
9 |
3.36 |
3.01 |
2.81 |
2.69 |
2.61 |
2.55 |
2.51 |
2.47 |
2.44 |
2.42 |
2.40 |
2.38 |
2.36 |
2.35 |
2.34 |
10 |
3.29 |
2.92 |
2.73 |
2.61 |
2.52 |
2.46 |
2.41 |
2.38 |
2.35 |
2.32 |
2.30 |
2.28 |
2.27 |
2.26 |
2.24 |
11 |
3.23 |
2.86 |
2.66 |
2.54 |
2.45 |
2.39 |
2.34 |
2.30 |
2.27 |
2.25 |
2.23 |
2.21 |
2.19 |
2.18 |
2.17 |
12 |
3.18 |
2.81 |
2.61 |
2.48 |
2.39 |
2.33 |
2.28 |
2.24 |
2.21 |
2.19 |
2.17 |
2.15 |
2.13 |
2.12 |
2.10 |
13 |
3.14 |
2.76 |
2.56 |
2.43 |
2.35 |
2.28 |
2.23 |
2.20 |
2.16 |
2.14 |
2.12 |
2.10 |
2.08 |
2.07 |
2.05 |
14 |
3.10 |
2.73 |
2.52 |
2.39 |
2.31 |
2.24 |
2.19 |
2.15 |
2.12 |
2.10 |
2.07 |
2.05 |
2.04 |
2.02 |
2.01 |
15 |
3.07 |
2.70 |
2.49 |
2.36 |
2.27 |
2.21 |
2.16 |
2.12 |
2.09 |
2.06 |
2.04 |
2.02 |
2.00 |
1.99 |
1.97 |
16 |
3.05 |
2.67 |
2.46 |
2.33 |
2.24 |
2.18 |
2.13 |
2.09 |
2.06 |
2.03 |
2.01 |
1.99 |
1.97 |
1.95 |
1.94 |
17 |
3.03 |
2.64 |
2.44 |
2.31 |
2.22 |
2.15 |
2.10 |
2.06 |
2.03 |
2.00 |
1.98 |
1.96 |
1.94 |
1.93 |
1.91 |
18 |
3.01 |
2.62 |
2.42 |
2.29 |
2.20 |
2.13 |
2.08 |
2.04 |
2.00 |
1.98 |
1.95 |
1.93 |
1.92 |
1.90 |
1.89 |
19 |
2.99 |
2.61 |
2.40 |
2.27 |
2.18 |
2.11 |
2.06 |
2.02 |
1.98 |
1.96 |
1.93 |
1.91 |
1.89 |
1.88 |
1.86 |
20 |
2.97 |
2.59 |
2.38 |
2.25 |
2.16 |
2.09 |
2.04 |
2.00 |
1.96 |
1.94 |
1.91 |
1.89 |
1.87 |
1.86 |
1.84 |
21 |
2.96 |
2.57 |
2.36 |
2.23 |
2.14 |
2.08 |
2.02 |
1.98 |
1.95 |
1.92 |
1.90 |
1.88 |
1.86 |
1.84 |
1.83 |
22 |
2.95 |
2.56 |
2.35 |
2.22 |
2.13 |
2.06 |
2.01 |
1.97 |
1.93 |
1.90 |
1.88 |
1.86 |
1.84 |
1.83 |
1.81 |
23 |
2.94 |
2.55 |
2.34 |
2.21 |
2.11 |
2.05 |
1.99 |
1.95 |
1.92 |
1.89 |
1.87 |
1.84 |
1.83 |
1.81 |
1.80 |
24 |
2.93 |
2.54 |
2.33 |
2.19 |
2.10 |
2.04 |
1.98 |
1.94 |
1.91 |
1.88 |
1.85 |
1.83 |
1.81 |
1.80 |
1.78 |
25 |
2.92 |
2.53 |
2.32 |
2.18 |
2.09 |
2.02 |
1.97 |
1.93 |
1.89 |
1.87 |
1.84 |
1.82 |
1.80 |
1.79 |
1.77 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[1] In the spring of 2000, the Texas Lottery changed the rules. The number of balls was increased to fifty-four to create a larger jackpot. The official reason for this change was to make playing the lotto more attractive because a higher jackpot makes the lotto game more exciting. Of course, the actual intent was to boost the lotto revenues!
[2] Under the new rules (see Note 1), this probability is 1 /25,827,165.
[3] These binomial numbers can be computed using the “Tools ^ Discrete distribution tools” menu of EasyReg International, the free econometrics software package developed by the author. EasyReg International can be downloaded from Web page http://econ. la. psu. edu/~hbierens/EASYREG. HTM
[4] Note that the latter phrase is superfluous because ^ C ^ signifies that every element of ^ is included in ^, which is clearly true, and 0C2 is true because 0C0UQ = ^.
[5] Also called afield.
[6] Also called a a - field or a Borel field.
[7] In the sequel we will denote the probability of an event involving random variables or vectors X as P (“expression involving X’) without referring to the corresponding set in &. For example, for random variables X and Y defined on a common probability space [&, &, P}, the shorthand notation P(X > Y) should be interpreted as P([ш є & : X(ш) > Y(ш)}).
[8] See also Appendix 1.A.
[9] The notation /g(x)dд(x) is somewhat odd because дф) has no meaning. It would be better to denote the integral involved by f g(x)/x(dx) (which some authors do), where dx represents a Borel set. The current notation, however, is the most common and is therefore adopted here too.
[10] Because oo — oo is not defined.
[11] Again, the notation /X(ofdPff is odd because P(ш) has no meaning. Some authors use the notation f X(ш)P(da>), where dш represents a set in &. The former notation is the most common and is therefore adopted.
[12] Here and in the sequel the notations P(Y = y |X = x), P(Y = y and X = x), P(X = x), and similar notations involving inequalities are merely shorthand notations for the probabilities P({ю є ^ : Y(ю) = y}|{&> є ^ : X(o)) = x}), P({&> є ^ : Y(&>) = y}0
{&> є ^ : X(ю) = x}), and P({ю є ^ : X(ю) = x}), respectively.
[13] The t distribution was discovered by W. S. Gosset, who published the result under the pseudonym Student. The reason for this was that his employer, an Irish brewery, did not want its competitors to know that statistical methods were being used.
[14] To distinguish the variance of a random variable from the variance matrix of a random vector, the latter will be denoted by Var with capital V
[15] The capital C in Cov indicates that this is a covariance matrix rather than a covariance of two random variables.
[16] Recall that “argmin” stands for the argument for which the function involved takes a minimum.
[17] The OLS estimator is called “ordinary” to distinguish it from the nonlinear least-squares estimator. See Chapter 6 for the latter.
[18] Let Xbe n - variate standard normally distributed, and let A be a nonstochastic n x k matrix with rank k < n. The projection of X on the column space of A is a vector p such that the following two conditions hold:
(1) p is a linear combination of the columns of A;
(2) the distance between X and p, ||X — p\ = ^(X — p)T(X — p), is minimal.
(a) Show that p = A(ATA)—1ATX.
(b) Is it possible to write down the density of p? If yes, do it. If no, why not?
(c) Show that ||p||2 = pTp has a x2 distribution. Determine the degrees of freedom involved.
(d) Show that ||X — p ||2 has a x2 distribution. Determine the degrees of freedom involved.
(e) Show that | p| and | X — p| are independent.
[19] Prove Theorem 5.13.
[20] Show that (5.11) is true for в in an open set & if d2 fn(x 19)/(d9)2 is, for each x, continuous on & and f sup9e&|d2 fn(x|9)/(d9)2|dx < ж. Hint: Use the mean-value theorem and the dominated convergence theorem.
[21] Law of cosines: Consider a triangle ABC, let у be the angle between the legs C ^ A and
C ^ B, and denote the lengths of the legs opposite to the points A, B, and C by а, в, and Y, respectively. Then у2 = а2 + в2 - 2ав cos(y).
[23] In writing a matrix product it is from now on implicitly assumed that the matrices involved are conformable.
[24] 0 0 0 10 0.5 0 1/
'2 4 2
0 0 0 , 0 3 0/
[25] + x2