Introduction to the Mathematical and Statistical Foundations of Econometrics

Eigenvalues and Eigenvectors

I.15.1. Eigenvalues

Eigenvalues and eigenvectors play a key role in modern econometrics - in par­ticular in cointegration analysis. These econometric applications are confined to eigenvalues and eigenvectors of symmetric matrices, that is, square matrices A for which A = AT. Therefore, I will mainly focus on the symmetric case.

Definition I.21: The eigenvalues11 ofann x n matrix A are the solutions for X of the equation det( A — X In) = 0.

It follows from Theorem I.29 that det(A) = J2 ±a1,i1 a2,i2... an, in, where the summation is over all permutations i1, i2,...,in of 1, 2,...,n. Therefore, if we replace A by A — XIn it is not hard to verify that det(A — XIn) is a polynomial of order n in X, det(A — XIn) = J^=o ckXk, where the coefficients ck are functions of the elements of A.

For example, in the 2 x 2 case

Подпись: Aa1,1 a1,2

a2,1 a2,2

Подпись: a1,1 — X a1,2 a2, 1 a2, 2 — X
Подпись: det( A — XI2) = det

we have

= (a1,1 — X)(a2,2 — X) — a1,2a2,1 = X2 — (a1,1 + a2,f)X + a1,1a2,2 — a1,2a2,b

which has two roots, that is, the solutions of X2 — (a1:1 + a2,2)X + a1,1a2,2 — a1,2a2,1 = 0:

Подпись: X1 =a1,1 + a2,2 + /(a17—a2~2f2+~4a12a22i

image886

2

There are three cases to be distinguished. If (a1:1 — a2,2)2 + 4a1,2a2,1 > 0, then

11 Eigenvalues are also called characteristic roots. The name “eigen” comes from the German adjective eigen, which means “inherent,” or “characteristic.”

M and M2 are different and real valued. If (a1,1 — a2,2)2 + 4a1,2a2,1 — 0, then M = M2 and they are real valued. However, if (a1,1 — a2,2)2 + 4a1,2a2,1 < 0, then M and M2 are different but complex valued:

Подпись: MПодпись: M2a1,1 + a2,2 + i ^/—(a21—'a2~2y2—~4ai~2a22[
2

a1,1 + a2,2 — i ^/—(«1,1 — a2,2)2 — 4a1,202,1
2

where i — V—T. In this case M1 and M2 are complex conjugate: M2 = ,M1.12 Thus, eigenvalues can be complex valued!

Подпись: (a1,1 — a2,2)2 + 4a2,2
Подпись: a1 , 1 + a2, 2 + M1 =

Note that if the matrix A involved is symmetric (i. e., a1,2 — a2j1), then

Подпись: M2 =a1,1 + a2,2 — У (a1,1 — a2,2)2 + 4a2,2

2

and thus in the symmetric 2 x 2 case the eigenvalues are always real valued. It will be shown in Section I.15.3 that this is true for all symmetric n x n matrices.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.