Introduction to the Mathematical and Statistical Foundations of Econometrics

Elementary Matrices and Permutation Matrices

Let A be the m x n matrix in (I.14). An elementary m x m matrix E is a matrix such that the effect of EA is the addition of a multiple of one row of A to another row of A. For example, let Ei, j (c) be an elementary matrix such that the effect

of E,, j(c)A is that c times row j is added to row i < j:

a1,1

• . . a1,n ^

ai-1,1

. . . ai — 1,n

ai, 1 + caj, 1

• ♦ ♦ ai, n + caj, n

ai+1,1

. • • ai +1,n

aj,1

••• a j, n

am,1

• • • am, n /

 

Ei, j (c) A

 

(1.19)

 

Then E+j (c)6 is equal to the unit matrix Im (compare (1.18)) except that the zero in the (i, j)’s position is replaced by a nonzero constant c. In particular, if i = 1 and j = 2 in (I.19), and thus E12(c) A adds c times row 2 of A to row 1 of A, then

1

c

0

••• 0

0

1

0

••• 0

E1,2(c) =

0

0

1

••• 0

0

0

0

••• 1

This matrix is a special case of an upper-triangular matrix, that is, a square ma­trix with all the elements below the diagonal equal to zero. Moreover, E21(c)A adds c times row 1 of A to row 2 of A :

Подпись: 1 0 0 ••• 0 c 1 0 ••• 0 E2,1(c) = 0 0 1 ••• 0 0 0 0 ••• 1 (I.20)

which is a special case of a lower-triangular matrix, that is, a square matrix with all the elements above the diagonal equal to zero.

Similarly, if E is an elementary n x n matrix, then the effect of AE is that one of the columns of A times a nonzero constant is added to another column of A. Thus,

The notation Eit j (c) will be used for a specific elementary matrix, and a generic elementary matrix will be denoted by “E.”

Definition I.8: An elementary matrix is a unit matrix with one off-diagonal zero element replaced by a nonzero constant.

Note that the columns of an elementary matrix are linear independent; hence, an elementary matrix is invertible. The inverse of an elementary matrix is easy to determine: If the effect of EA is that c times row j of A is added to row i of A, then E—1 is an elementary matrix such that the effect of E—1EA is that — c times row j of EA is added to row i of A; thus, E—lEA restores A. For example, the inverse of the elementary matrix (I.20) is

/1 0 0 ...

0

c 10 ...

0

001 ...

0

•• о

•• о

•• С

1

E2,1(—c).

E2,1(c)—1

Подпись: 1 0 0 ... 0 —c 1 0 ... 0 0 0 1 ... 0 0 0 0 ... 1

We now turn to permutation matrices.

Definition I.9: An elementary permutation matrix is a unit matrix with two columns or rows swapped. A permutation matrix is a matrix whose columns or rows are permutations of the columns or rows of a unit matrix.

In particular, the elementary permutation matrix that is formed by swapping the columns i and j of a unit matrix will be denoted by Pi, j.

The effect of an (elementary) permutation matrix on A is that PA swaps two rows, or permutates the rows, of A. Similarly, AP swaps or permutates the columns of A. Whether you swap or permutate columns or rows of a unit matrix does not matter because the resulting (elementary) permutation matrix is the same. An example of an elementary permutation matrix is

0

1

0

... 0

1

0

0

... 0

P1,2 =

0

0

1

... 0

0

0

0

... 1

Note that a permutation matrix P can be formed as a product of elementary permutation matrices, for example, P = Pi1,j1... Pik, jt. Moreover, note that if an elementary permutation matrix Дj is applied to itself (i. e., ДjPij), then the swap is undone and the result is the unit matrix: Thus, the inverse of an elementary permutation matrix Pi, j is Pi, j itself. This result holds only for elementary permutation matrices, though. In the case of the permutation matrix P = Piu j1... Pik, jt we have P—1 = Pik, jk... Pi1t j1. Because elementary
permutation matrices are symmetric (i. e., Pi, j = pT), it follows that P 1 = pT j... PT j = PT. Moreover, if E is an elementary matrix and Pi, j an ele­mentary permutation matrix, then Pi, jE = EPi, j. Combining these results, we obtain the following theorem:

Theorem I.7: IfE is an elementary matrix and P is a permutation matrix, then PE = EPT. Moreover, P-1 = PT.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.