Introduction to the Mathematical and Statistical Foundations of Econometrics

First — and Second-Order Conditions

The following conditions guarantee that the first - and second-order conditions for a maximum hold.

Assumption 8.1: The parameter space © is convex and в0 is an interior point of ©. The likelihood function L n (в) is, with probability 1, twice continuously dif­ferentiable in an open neighborhood ©0 of в0, and, for i, i2 = 1, 2, 3,...,m,

Подпись: д 2 Ln (в) 1 sup в Є©0 дві, дв2 Подпись: EПодпись: <(8.21)

Подпись: E Подпись: sup в Є©0 Подпись: d 2ln( L n (в)) двк дві2 Подпись: < Подпись: (8.22)

and

Подпись: E image661 Подпись: = 0 and E Подпись: d 2ln(L „ (в)) двдвт
image664

Theorem 8.2: Under Assumption 8.1,

Подпись: d ln( L n (в )) двт image666= —Var

Proof: For notational convenience I will prove this theorem for the uni­variate parameter case m = 1 only. Moreover, I will focus on the case that Z = (zT, •••, zT )T is a random sample from an absolutely continuous distri­bution with density f (z^0).

Observe that

1 n f

E [ln( L n (в ))/n] = -£> [ln( f( Zj |в))] = Ы(/^в ))f(z^o)dz,

n j=i J

(8.23)

It follows from Taylor’s theorem that, for в e ©0 and every 8 = 0 for which

в + 8 e ©0, there exists a A.(z, 8) e [0, 1] such that

ln(f (z^ + 8)) — ln(f (z|в))

Подпись: (8.24)= 8 d ln(f(z |в)) 1 82 d 2ln(f (z6 + k(z,8)8))

d в + 2 8 (d (в + Mz,8)8))2

Note that, by the convexity of ©, в0 + A.(z, 8)8 e ©• Therefore, it follows from condition (8.22), the definition of a derivative, and the dominated convergence theorem that

d f f d ln( [Ш))

d^j Щ/^в))f(z|вo)dz = j -------------- f(z|вo)dz• (8.25)

image668 Подпись: d 1 = 0. d в Подпись: (8.26)
image671

Similarly, it follows from condition (8.21), Taylor’s theorem, and the dominated convergence theorem that

image672

Moreover,

The first part of Theorem 8.2 now follows from (8.23) through (8.27).

image673

As is the case for (8.25) and (8.26), it follows from the mean value theorem and conditions (8.21) and (8.22) that

image674
and

[(dAz^ )/d в2„m4J| [d2 f (z^ ),,

- Д-№|в»)'4' - = ! - wdA

- f (d ln(f(z|9)) d)2/(-іво)^г|в.»o.

The adaptation of the proof to the general case is reasonably straightforward and is therefore left as an exercise. Q. E.D.

The matrix

H = Var (9 ln( L n (в ))/дв T|в =во) (8.30)

is called the Fisher information matrix. As we have seen in Chapter 5, the inverse of the Fisher information matrix is just the Cramer-Rao lower bound of the variance matrix of an unbiased estimator of в0.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.