Introduction to the Mathematical and Statistical Foundations of Econometrics

The Tobit Model

Let Zj = (Yj, XTj )T, j = 1,..., и be independent random vectors such that

Yj = max(Yj, 0), where Yj = a0 + всТXj + Uj

with Uj |Xj - N(0,o02). (8.16)

The random variables Yj are only observed if they are positive. Note that

P[Yj = 0|Xj] = P [ao + eoTXj + Uj < 0|Xj]

= P [Uj >a0 + вГXj |Xj] = 1 - Ф (ja0 + A0TXj)М>),

X

where Ф(х) = j exp(-u2/2)/V2ndu.

This is a Probit model. Because model (8.16) was proposed by Tobin (1958) and involves a Probit model for the case Yj = 0, it is called the Tobit model. For example, let the sample be a survey of households, where Yj is the amount of money household j spends on tobacco products and Xj is a vector of household characteristics. But there are households in which nobody smokes, and thus for these households Yj = 0.

In this case the setup of the conditional likelihood function is not as straight­forward as in the previous examples because the conditional distribution of Yj given Xj is neither absolutely continuous nor discrete. Therefore, in this case it is easier to derive the likelihood function indirectly from Definition 8.1 as follows.

First note that the conditional distribution function of Yj, given Xj and Yj >

0, is

Подпись: P [Yj < у |Xj, Yj > 0] =P[0 < Yj < y|Xj]

P[Yj > 0|Xj]

P [ — a0 — e0TXj < Uj < у — a0 — e0TXj | Xj ]

P[Yj > 0|Xj]

Подпись: I(y > 0);Ф ((у — a0 — eTXj)M)) — Ф (( — a0 — eTXj)M))

Ф ((a0 + eTXj)M)) hence, the conditional density function of Yj, given Xj and Yj > 0, is

Подпись: нувс Xj, Yj > 0)Подпись: where y(x)= И (y - a0 — AlXj) Ы, (y > 0) 00Ф((а0 + во Xj)/0-0) exp(—x 2/2)

Next, observe that, for any Borel-measurable function g of (Yj, Xj) such that

E[|g(Yj, Xj)|] < to, we have

E[g(Yj, Xj)|Xj]

= g(0, Xj) P [Yj = 0| Xj ] + E [g(Yj, Xj) I (Yj > 0)| Xj ]

= g(0, Xj)P[Yj = 0|Xj]

+ E(E[g(Yj, Xj)|Xj, Yj > 0)|Xj]I(Yj > 0)|Xj)

= g(0, Xj) (1 - Ф ((ас + вТ Xj )/ac))

(

TO

I g(y, Xj )h(y |0с, Xj, Yj > 0)dy • I (Yj > 0)| Xj с

= g(0, Xj) (1 - Ф ((ас + вТXj)M))

TO

+ j g(y, Xj^(y^c, Xj, Yj > 0)dy • Ф ((ас + P^Xj)/ос) с

= g(0, Xj) (1 - Ф ((ас + вТXj)M))

TO

+ — f g(y, Xj )ip ((y - ас - вс Xj )/ас) dy. (8.17)

ос J

с

Hence, if we choose g(Yj, X)

= (1 - Ф((а + вT Xj )/о)) I (Yj = Q) + о - >((Yj - а - вT Xj )/о )I (Yj > Q)

(1 - Ф((ас + вТ Xj )M>)) I (Yj = с) + о-V(Y; - ас - вТ Xj )M>)I (Yj > с) ’

(8.18)

it follows from (8.17) that

E[g(Yj, Xj)|Xj] = 1 - Ф ((а + вTXj)/о)

TO

+ О J V ((у - а - вТXj)/о) dy с

= 1 - Ф ((а + вТXj)/о)

+ 1 - Ф (( - а - вTXj)/о) = 1. (8.19)

In view of Definition 8.1, (8.18) and (8.19) suggest defining the conditional likelihood function of the Tobit model as

n

L П О) = П [(1 - ^(а + вT Xj) /о)) I (Yj = с)

j=1

+ о - V ((Yj - а - в TXj )/о) I (Yj > с)].

The conditions (b) in Definition 8.1 now follow from (8.19) with the a-algebras involved defined as in the regression case. Moreover, the conditions (c) also appty.

Подпись: E[Yj IXj, Yj > 0] image651 Подпись: (8.20)

Finally, note that

Therefore, if one estimated a linear regression model using only the observations with Yj > 0, the OLS estimates would be inconsistent, owing to the last term in (8.20).

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.