Introduction to the Mathematical and Statistical Foundations of Econometrics

Likelihood Functions

There are many cases in econometrics in which the distribution of the data is neither absolutely continuous nor discrete. The Tobit model discussed in Section

8.3 is such a case. In these cases we cannot construct a likelihood function in the way I have done here, but still we can define a likelihood function indirectly, using the properties (8.4) and (8.7):

Definition 8.1: A sequence L n (в), n > і, of nonnegative random functions on a parameter space © is a sequence of likelihood functions if the following conditions hold:

(a) There exists an increasing sequence.^n, n > 0, of a-algebras such that for each в є © and n > і, Ln(в) is measurable ^n.

(b)

Подпись: P Подпись: E Подпись: L n (в )/іп-і(в) L n (во)/Ln-l(во) Подпись: ^n-1 Подпись: і Подпись: і.

There exists a в0 є © such that for all в є ©, P (E [ L і(в )/L і(в0)^0] < і) = і, and, for n > 2,

(c) For all 6 = Є2 in &, P [Li(0i) = Lx{e2)^o] < i, and for n > 2,

p[Ln(ei)/L„_i(ei) = Ln(Є2)/Ln-i(e2)^"n-i] < i-1

The conditions in (c) exclude the case that Ln (Є) is constant on ©. Moreover, these conditions also guarantee that Є0 є © is unique:

Theorem 8.1: For all Є є ©{Є0} and n > i, E[ln(Ln(Є)/Ln(Є0))] < 0-

Proof: First, let n = i. I have already established that ln(L, i(e )/L^e0)) < Li(B)/Li(Bo) _ i if Ln(e)/Ln(Єо) = i. Thus, letting Y(e) = Ln(e)/Ln(Єо) _ ln(Ln(e)/Ln(e0)) _ i and X(e) = Ln(e)/Ln(e0), we have Y(e) > 0, and Y (e) > 0 if and only if X (e) = i. Now suppose that P (E [Y (e )&0] = 0) = i. Then P[Y(e) = 0&0] = i a. s. because Y(e) > 0; hence, P[X(e) = i&0] = i a. s. Condition (c) in Definition 8.i now excludes the possibility that e = e0; hence, P(E[ln(Li(e)/Li(e0))^0] < 0) = i if and only if e = e0. In its turn this result implies that

E [ln(^i(e )/^i(eo))] < 0 if e = Єо - (8.9)

By a similar argument it follows that, for n > 2,

E [ln(Ln (e )/L n_i(e)) _ ln(Ln (Єо)/L n-i(eo))] < 0 if Є = Єо-

(8.i0)

The theorem now follows from (8.9) and (8.i0). Q. E.D.

As we have seen for the case (8.i), if the support {z : f (ze) > 0} of f (ze) does not depend on Є, then the inequalities in condition (b) become equalities, with &n = a(Zn,---, Zi) for n > i, and &0 the trivial a-algebra. Therefore,

Подпись: P Подпись: E Подпись: L n (e)/L n_i(e) Ln (ЄО)/L n-i(eo) Подпись: =i Подпись: = i-

Definition 8.2: The sequence L n (Є), n > i, of likelihood functions has invari­ant support if, for all Є є ©, P(E[Li(e)/L/i(eo)&0] = i) = i, and, forn > 2,

As noted before, this is the most common case in econometrics.

Подпись: iSee Chapter 3 for the definition of these conditional probabilities.

8.2. Examples 8.3.1. The Uniform Distribution

Let Zj, j = 1n be independent random drawings from the uniform [O,0o] distribution, where 00 > 0. The density function of Zj is f (zo) = 0—lI(0 < z < 00), and thus the likelihood function involved is

n

Ln(0) = 0"пПі(0 < Zj < 0). (8.11)

j=1

Подпись: E [7.1(0 )/7.1(0C)^G] Г 7n(0)/Ln-1(0) E — - Ln (0G)/L n-1(0o) image634

In this case Жп = a (Zn, Z1) for n > 1, and we may choose for У0 the trivial a-algebra {^, 0}. The conditions (b) in Definition 8.1 now read

= min(0, 0g)/0 < 1 for n > 2.

Moreover, the conditions (c) in Definition 8.1 read

P [0—11(0 < Z1 < 01) = 0—1 I(0 < Z1 < 02)]

= P(Z1 > max(0b 02)) < 1 if 01 = 02.

Hence, Theorem 8.1 applies. Indeed,

Подпись: E [ln( 7. n (0)/7. n (0o))]n ln(0o/0) + nE[ln(I(0 < Z1 < 0))] - E [ln(I(0 < Z1 < 0o))] n ln(0o/0) + nE[ln(I(0 < Z1 < 0))]

—<x if 0 < 0o,

n ln(0o/0) < 0 if 0 > 0o,

0 if 0 = 0o.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.