Introduction to the Mathematical and Statistical Foundations of Econometrics

Convergence of Characteristic Functions

Recall that the characteristic function of a random vector X in Kk is defined as

p(t) = E [exp(itTX)] = E [cos(tTX)] + i ■ E [sin(tTX)]

for t e Kk, where i = */—1. The last equality obtains because exp(i ■ x) = cos(x) + i ■ sin(x).

Also recall that distributions are the same if and only if their characteristic functions are the same. This property can be extended to sequences of random variables and vectors:

Theorem 6.22: Let Xn and X be random vectors in Kk with characteristic functions pn (t) and (p(t), respectively. Then Xn ^d X if and only if (p(t) = limn^TOpn(t) for all t e Kk.

Proof: See Appendix 6.C for the case k = 1.

Note that the “only if” part of Theorem 6.22 follows from Theorem 6.18: Xn ^d X implies that, for any t e Kk,

lim E [cos(tTXn)] = E [cos(tTX)];

n^TO

lim E [sin(tTXn)] = E [sin(tTX)];

n^TO

hence,

lim pn (t) = lim E [cos(tTXn)] + i ■ lim E [sin(tTXn)]

n^TO n^TO n^TO

= E[cos(tTX)] + i ■ E[sin(tTX)] = p(t).

Theorem 6.22 plays a key role in the derivation of the central limit theorem in the next section.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.