Introduction to the Mathematical and Statistical Foundations of Econometrics

Generalized Slutsky’s Theorem

Another easy but useful corollary of Theorem 6.10 is the following generaliza­tion of Theorem 6.3:

Theorem 6.12: (Generalized Slutsky’s theorem) Let Xn a sequence of random vectors in Kk converging in probability to a nonrandom vector c. Let Ф„ (x) be a sequence of random functions on Kk satisfying plimn^TO supx єВ | Ф„ (x) -

Ф^)| = 0, where B is a closed and bounded subset of R containing c and Ф is a continuous nonrandom function on B. Then Фп (Xn) ^ p Ф(с).

Proof: Exercise.

This theorem can be further generalized to the case in which c = X is a random vector simply by adding the condition that P [X є B] = 1, but the current result suffices for the applications of Theorem 6.12.

This theorem plays a key role in deriving the asymptotic distribution of an M-estimator together with the central limit theorem discussed in Section 6.7.

6.4.2. The Uniform Strong Law of Large Numbers and Its Applications

The results of Theorems 6.10-6.12 also hold almost surely. See Appendix 6.B for the proofs.

Theorem 6.13: Under the conditions of Theorem 6.10, supee0|(1/n) Tnj=1 g(Xj, в) - E[g(X1, в)]|^ 0 a. s.

Theorem 6.14: Under the conditions of Theorems 6.11 and 6.13, в ^ во a. s.

Theorem 6.15: Under the conditions of Theorem 6.12 and the additional con­dition that Xn ^ c a. s., Фп(Xn) ^ Ф^) a. s.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.