Introduction to the Mathematical and Statistical Foundations of Econometrics

Density Func tions

An important concept is that of a density function. Density functions are usually associated to differentiable distribution functions:

Definition 1.13: The distribution of a random variable X is called absolutely continuous if there exists a nonnegative integrable function f, called the density function ofX, such that the distribution function F of X can be written as the (Lebesgue) integral F (x) = f (u)du. Similarly, the distribution of a random

Подпись: F (x) image041

vector X є Rk is called absolutely continuous if there exists a nonnegative integrable function f on Rk, called the joint density, such that the distribution function F of X can be written as the integral

where x = (x1,..., xk)T.

Thus, in the case F(x) = /TO f (u)du, the density function f (x) is the derivative of F (x) : f (x) = F'(x), and in the multivariate case F (x1 ,...,xk) = /—TO... /—TO f (u 1,..., uk )du1 ...duk the joint density is f (xb •••, xk) = (9/9x0...(d/dxk)F(x1, ...,xk).

The reason for calling the distribution functions in Definition 1.13 abso­lutely continuous is that in this case the distributions involved are absolutely continuous with respect to Lebesgue measure. See Definition 1.12. To see this, consider the case F(x) = /-TOf (u)du, and verify (Exercise) that the corre­sponding probability measure г is

li(B) = I f(x)dx, (1.27)

where the integral is now the Lebesgue integral over a Borel set B. Because the Lebesgue integral over a Borel set with zero Lebesgue measure is zero (Exercise), it follows that г(B) = 0 if the Lebesgue measure of B is zero.

For example, the uniform distribution (1.25) is absolutely continuous be­cause we can write (1.25) as F(x) = /-TO f (u)du with density f (u) = 1 for 0 < u < 1 and zero elsewhere. Note that in this case F(x) is not differen­tiable in 0 and 1 but that does not matter as long as the set of points for which the distribution function is not differentiable has zero Lebesgue mea­sure. Moreover, a density of a random variable always integrates to 1 be­cause 1 = limx^TOF(x) = /TO f (u)du. Similarly, for random vectors X є

Rk: TOTO o—TO ••• TOTO f (u1>... uk )du1 ...duk =1

Note that continuity and differentiability of a distribution function are not sufficient conditions for absolute continuity It is possible to construct a contin­uous distribution function F(x) that is differentiable on a subset D c R, with RD a seo with Lebesgue measure zero, such that F'(x) = 0 on D, and thus in this case /TO F'(x)dx = 0. Such distributions functions are called singular. See Chung (1974,12-13) for an example of how to construct a singular distribution function on R and Chapter 5 in this volume for singular multivariate normal distributions.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.