Introduction to the Mathematical and Statistical Foundations of Econometrics

Binomial Numbers

In general, the number of ways we can draw a set of k unordered objects out of a set of n objects without replacement is

Подпись: (1.1)/ n def. n!

Ы = k!(n — k)!

These (binomial) numbers,[3] read as “n choose k,” also appear as coefficients in the binomial expansion

Подпись: (1.2)n / n

(a + b)n = ^( kJakbn—k

k=0

The reason for defining 0! = 1 is now that the first and last coefficients in this binomial expansion are always equal to 1:

Подпись: — = 1. 0! n / n n!

0/ = W =

For not too large an n, the binomial numbers (1.1) can be computed recursively by hand using the Triangle of Pascal:

1

1 1

1 2 1

13 3 1 (1.3)

1 4 6 4 1

1 5 10 10 5 1

1 .................................................. 1

Except for the 1’s on the legs and top of the triangle in (1.3), the entries are the sum of the adjacent numbers on the previous line, which results from the following easy equality:

image008for n > 2, k = 1,...,n — 1. (1.4)

Thus, the top 1 corresponds to n = 0, the second row corresponds to n = 1, the third row corresponds to n = 2, and so on, and for each row n + 1, the entries are the binomial numbers (1.1) for k = 0,...,n. For example, for n = 4 the coefficients of akbn—k in the binomial expansion (1.2) can be found on row 5 in (1.3): (a + b)[4] = 1 x a4 + 4 x a3b + 6 x a2b2 + 4 x ab3 + 1 x b4.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.