Financial Econometrics and Empirical Market Microstructure

Time Series Data Mining vs. Risk Management

The major tasks considered by the time series data mining community (Ratanama- hatana et al. 2010) are as follows:

- Indexing (Query by Content): Given a query time series Q, and some similar - ity/dissimilarity measure D(Q;C), find the most similar time series in database DB.

- Clustering: Find natural groupings of the time series in database DB under some similarity/dissimilarity measure D(Q;C).

- Classification: Given an unlabeled time series Q, assign it to one of two or more predefined classes.

- Prediction (Forecasting): Given a time series Q containing n data points, predict the value at time n + 1.

These tasks can be used to solve problems in risk management (see Table 1).

Let us discuss some tools for time series data mining.

Dynamic time-warping (DTW) (Keogh and Ratanamahatana 2005) is an algorithm for measuring similarity between two sequences that may vary in time or speed. For instance, similarities in walking patterns would be detected, even if in one video the person was walking slowly and if in another he or she were walking more quickly, or even if there were accelerations and decelerations during the course of one observation.

Mining time series data task

Risk management tool

Indexing

Benchmarking

Clustering

Risk analysis

Classification

Risk classification

Prediction

Scenario generation

Summarization

Risk map

Anomaly detection

Hidden risk identification

Segmentation

Risk mapping and aggregation into portfolio

Table 1 Time series data mining vs. risk management tool

Given two time sequences C(m) and Q(n)m, it fills an m by n matrix representing the distances of best possible partial path using a recursive formula:

D (i, j) = d (i, j) C min fD (i. j - 1),D(i -1,j),D(i - 1 ,j - 1)},

1 < i < n, 1 < j < m (2)

Where D(I, j) represents the distance between Qi and Cj. D(1,1) is initialized to d(1,1). The alignment that results in the minimum distance between the two sequences has value D(m, n).

Добавить комментарий

Financial Econometrics and Empirical Market Microstructure

Modeling Financial Market Using Percolation Theory

Anastasiya Byachkova and Artem Simonov Abstract Econophysics is a relatively new discipline. It is one of the most interesting and promising trends in modeling complex economic systems such as financial …

Multifractal Formalism for Stochastic Processes

Original definition of fractal was proposed by Mandelbrot with respect to sets. He defined fractal as a mathematical set with fractal dimension is strictly larger than its topological dimension (Mandelbrot …

Adaptive Learning

Risk management is a core discipline in a rapidly changing world. From finance to ecology, we face unprecedented systemic risks from increasingly coupled global systems. Non-linearities render long term predictions …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.