Advanced Econometrics Takeshi Amemiya

Global Concavity of the Likelihood Function in the Logit and Probit Models

Подпись: log L(P) = log L(j}) image552 Подпись: (9.2.18)

Global concavity means that d2 log L/dfldf}' is a negative definite matrix for fi Є В. Because we have by a Taylor expansion

(P~P)-

where P* lies between P and p, global concavity implies that log L(P) > log L(P) for P Ф P’iiP is a solution of (9.2.8). We shall prove global concavity for logit and probit models.

Подпись: ал dx Подпись: ... , а*л .. _.. ал Л(1-Л) and ^ = <1 -2Л)—. Подпись: (9.2.19)

For the logit model we have

Inserting (9.2.19) into (9.2.12) with F— Л yields

Д2 T n

-ЩІ'---------- 2А,(1-Л,)х,.х?. (9.2.20)

where = Л(х'іР). Thus the global concavity follows from Assumption 9.2.3.

Подпись: a2 log L apap' Подпись: - 2 <M>r2( 1 - Ф/Г2[(У, - ^УІФ, + Ф 1)ф( і-1 Подпись: (9.2.21)

A proof of global concavity for the probit model is a little more complicated. Putting F, = Фf, fi = фі, and/• = — х'іРФі, where ф is the density function of ЩО, 1), into (9.2.12) yields

+ {уі - Ф/)Ф,(і - ф,)х<0]х, х;. Thus we need to show the positivity of

8y(x) -(у - 2уФ + Ф2) + (у - Ф)Ф(1 - Ф)х

for y = 1 and 0. First, consider the case y = 1. Because gi(x) = (1 — Ф)2(ф + Фх), we need to show ф + Фх > 0. The inequality is clearly satisfied ifxSO, so assume x < 0. But this is equivalent to showing

ф > (1 — Ф)х for x > 0, (9.2.22)

which follows from the identity (see Feller, 1961, p. 166)

x-1 exp (—x2/2) — J (1 + y~2) exp (—y2/2) dy. (9.2.23)

Next, if у = 0, we have g0(x) = С^[ф — (1 — Ф)х], which is clearly positive if x S 0 and is positive if x > 0 because of (9.2.22). Thus we proved global concavity for the probit case.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.