Advanced Econometrics Takeshi Amemiya

Two Error Components Model with Endogenous Regressors

6.6.5 The two error components model with endogenous regressors is defined by У! = Xifi + Zy + YlS + n + el (6.6.40)

У2 = X2)? + Zy + + fl + €2 у 7* = Xrfi T Zy + Yr£ + Ц + eT,

where y„ t = 1, 2,. . . , T, is an А-vector, X, is an NX К matrix of known constants, Z is an NX G matrix of endogenous variables, Y, is an iV X F matrix of endogenous variables, and ц and e, are W-vectors of random vari­ables with the same characteristics as in 2ECM. The variable Z is always assumed to be correlated with bothp and e,, whereas Y, is sometimes assumed to be correlated with both fi and є, and sometimes only with fi. The two error components model with endogenous regressors was analyzed by Chamberlain and Griliches (1975) and Hausman and Taylor (1981). Chamberlain and Griliches discussed maximum likelihood estimation assuming normality, whereas Hausman and Taylor considered the application of instrumental variable procedures.

Amemiya and MaCurdy (1983) proposed two instrumental variables esti­mators: one is optimal if Y, is correlated with e, and the other is optimal if Y, is uncorrelated with When we write model (6.6.40) simply as у = Wa + u, the first estimator is defined by

a, = (W'Q“1'2P1n-1/2W)“,W/£|-1/aPlQ-,/ay, (6.6.41)

where P, is the projection matrix onto the space spanned by the column vectors of the NTXKT2 matrix fl_1/2(Ir© S), where S = (X,, X2,. . . , XT). Amemiya and MaCurdy have shown that it is asymp­totically optimal among all the instrumental variables estimators if Y, is cor­related with €,. The second estimator is defined by

a2 = (W, Q-w2PaQ-1'2W)-,W'Q-,/2P2Q-,'ay, (6.6.42)

where P2 = I — Г_11г1г® [Ijv S(S'S)-1S']. It is asymptotically optimal among all the instrumental variables estimators if Yt is uncorrelated with et. The second estimator is a modification of the one proposed by Hausman and Taylor (1981). In both of these estimators, Cl must be estimated. If a standard consistent estimator is used, however, the asymptotic distribution is not af­fected.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.