Advanced Econometrics Takeshi Amemiya

Balestra-Nerlove Model

As we mentioned earlier, this is a generalization of 2ECM in the sense that a lagged endogenous variable yu_, is included among the regressors. Balestra and Nerlove (1966) used this model to analyze the demand for natural gas in 36 states in the period 1950-1962.

All the asymptotic results stated earlier for 2ECM hold also for the Balestra- Nerlove model provided that both N and T go to <», as shown by Amemiya (1967). However, there are certain additional statistical problems caused by the presence of a lagged endogenous variable; we shall delineate these prob­lems in the following discussion.

First, the LS estimator ofobtained from (6.6.18) is always unbiased and is consistent if N goes to oo. However, if xft contain y/f/_!, LS is inconsistent even when both N and T go to °o. To see this, consider the simplest case

Подпись: (6.6.33)У и = Mr-i + V-і +

where we assume |/?| < 1 for stationarity and ую = 0 for simplicity. Solving the difference equation (6.6.33) and omitting i, we obtain

image482(6.6.34)

Therefore, putting back the subscript i,

image483(6.6.35)

Therefore

Подпись: 1 Д al (6.6.36)

which implies the inconsistency of LS.

Second, we show that the transformation estimator fiQl is consistent if and only if T goes to °°.9 We have

Подпись: (6.6.37)An-A-WQx.^xjQe,

where Q is given by (6.6.22). We need to consider only the column of X,, which corresponds to the lagged endogenous variable, denoted y_,, and only the T~xA part of Q. Thus the consistency (as Г—* °°) of jJQ1 follows from

image486(6.6.38)

Third, if ую (the value of at time t = 1) is assumed to be an unknown parameter for each i, the MLE offi is inconsistent unless T goes to °° (Ander­son and Hsiao, 1981,1982). The problem of how to specify the initial values is important in a panel data study, where typically N is large but T is not.

Fourth, the possibility of a negative MLE of pis enhanced by the presence of a lagged endogenous variable, as shown analytically by Maddala (1971) and confirmed by a Monte Carlo study of Nerlove (1971). In his Monte Carlo study, Nerlove compared various estimators of fi and concluded that the FGLS described at the end of Section 6.6.2 performs best. He found that the transformation estimator of the coefficient on yu-i has a tendency of down­ward bias.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.