Advanced Econometrics Takeshi Amemiya

The Case of an Unknown Covariance Matrix

In the remainder of this chapter, we shall consider Model 6 assuming that 2 is unknown and therefore must be estimated. Suppose we somehow obtain an estimator 2. Then we define the feasible generalized least squares (FGLS) estimator by

Подпись: (6.2.1)fif = (X'2-1X)-1X'2_ly,

A

assuming 2 is nonsingular.

For fip to be a reasonably good estimator, we should at least require it to be consistent. This means that the number of the firee parameters that character­ize 2 should be either bounded or allowed to go to infinity at a slower rate than T. Thus one must impose particular structure on 2, specifying how it depends on a set of free parameters that are fewer than Tin number. In this section we shall consider five types of models in succession. For each we shall impose a particular structure on 2 and then study the properties of LS and FGLS and other estimators of fi. We shall also discuss the estimation of 2. The five models we shall consider are (1) serial correlation, (2) seemingly unrelated regression models, (3) heteroscedasticity, (4) error components models, and (5) random coefficients models.

In each of the models mentioned in the preceding paragraph, 2 is obtained from the least squares residuals & = у — Xfi, ^where fi is the LS estimator. Under general conditions we shall show that fi is consistent in these models and hence that 2 is consistent. Using this result, we shall show that fip has the same asymptotic distribution as fiG.

In some situations we may wish to use (6.2.1) as an iterative procedure; that is, given fip we can calculate the new residuals у — X&, reestimate 2, and insert it into the right-hand side of (6.2.1). The asymptotic distribution is unchanged by iterating, but in certain cases (for example, if у is normal) iterating will allow convergence to the maximum likelihood estimator (see Oberhofer and Kmenta, 1974).

6.2 Serial Correlation

In this section we shall consider mainly Model 6 where u follows AR(1) defined in (5.2.1). Most of our results hold also for more general stationary processes, as will be indicated. The covariance matrix of u, denoted 2t, is as given in (5.2.9), and its inverse is given in (5.2.14).

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.