Advanced Econometrics Takeshi Amemiya

Autoregressive Models

5.1.2 First-Order Autoregressive Model

Consider a sequence of random variables {y,}, t = 0, ± 1, ±2,. . . , which follows

Уі = РУі- i + e(, (5-2.1)

where we assume

Assumption А. {є,}, t = 0, ± 1, ±2,............. are i. i.d. with Ее, = 0 and

Ee}= a2 and independent of y,-i, yf_2,....

Assumption B. p < 1.

Assumption C. Ey, — 0 and Ey, yt+h = yh for all t. (That is, {}>,} are weakly stationary.)

Model (5.2.1) with Assumptions A, B, and C is called a stationaryfirst-order autoregressive model, abbreviated as AR(1).

From (5.2.1) we have

У, = Psy,-s + 2 fa-i - (5-2.2)

j-о

But 1іт,_ю E(psy,_s)2 = 0 because of Assumptions В and C. Therefore we have

Уг-^pbt-,, (5.2.3)

which means that the partial summation of the right-hand side converges to y, in the mean square. The model (5.2.1) with Assumptions A, B, and C is equivalent to the model (5.2.3) with Assumptions A and B. The latter is called the moving-average representation of the former.

A quick mechanical way to obtain the moving-average representation

(5.2.3) of (5.2.1) and vice-versa is to define the lag operator L such that Ly, — L2y, = y,_2 Then (5.2.1) can be written as

(1 - pL)y, = e„ (5.2.4)

where 1 is the identity operator such that ly, — y,. Therefore

Подпись: y, = (l — pL)~1e, =image370(5.2.5)

which is (5.2.3).

An AR(1) process can be generated as follows: Define as a random variable independent of €,, e2,. . . , with Ey0 — 0 and Ey% = a2/(1 — p2). Then define y, by (5.2.2) after putting s = t.

The autocovariances (yA) can be expressed as functions of p and a2 as follows: Multiplying (5.2.1) with y,_A and taking the expectation yields

yh = pyh-, h =1,2,.... (5.2.6)

From (5.2.1), E(y, — py,_, )2 = Ее2, so that we have

{І+р^Уо-гру^а2. (5.2.7)

Solving (5.2.6) and (5.2.7), we obtain a2of1

Vh = jZTf’ Л-0,1,2,----------- (5.2.8)

Note that Assumption C implies y_A = yh.

image371 image372 Подпись: (5.2.9)

Arranging the autocovariances in the form of a matrix as in (5.1.1), we obtain the autocovariance matrix of AR(1),

Подпись: -ґуа 0 0 • 0 -P 1 0 0 -p 1 . • 0 -p 1 0 0 • • 0 -p 1 Подпись: (5.2.10)
image376

Now let us examine an alternative derivation of 2, that is useful for deriving the determinant and the inverse of 2, and is easily generalizable to higher - order processes. Define Г-vectors у = (Уі, y2> • • • . Утї and б(*0 = [(1 - рі*УІ2Уі, e2, €3,. . . , ет and а ГХ Tmatrix

Then we have

(5.2.11)

But, because £€*)€*) = cr2I, we obtain

Подпись: (5.2.12)2j = <t2R71(R'i)-,>

which can be shown to be identical with (5.2.9). Taking the determinant of both sides of (5.2.12) yields

Подпись: ffil —Подпись: (5.2.13)T2T

1 - P2'

Inverting both sides of (5.2.12) yields

Подпись: 1 -p 0 0 • 0 -p 1 +p2 -p 0 • 0 1 0 -p 1 +p2 • • • t72 * • • • • * • -p 1 +p2 -p * • 0 -p 1 (5.2.14)

By inserting (5.2.8) into (5.1.2), we can derive the spectral density of AR( 1):

Подпись:Подпись:/Л")=ТТЛ E

1 P A—»

=у^ [i+J; (pe^f+J; (/*-*? ]

_ g2 Г. peia і

1 — p2 l 1 — 1 — pe~iaJ

Подпись:1 — 2p COS G) + /)

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.