Advanced Econometrics Takeshi Amemiya

Concentrated Likelihood Function

We often encounter in practice the situation where the parameter vector 0O can be naturally partitioned into two subvectors Oq and fi0 as 0O = (a£, fi'0)'. The regression model is one such example; in this model the parameters consist of the regression coefficients and the error variance. First, partition the maximum likelihood estimator as 0 = (o', fi')'. Then, the limit distribution of •Jr{& — Oo) can easily be derived from statement (4.2.23). Partition the in­verse of the asymptotic variance-covariance matrix of statement (4.2.23) con­formably with the partition of the parameter vector as

image260(4.2.39)

Подпись:Then, by Theorem 13 of Appendix 1, we have v'TXd - Oo) — N[0, (A - BC-'BT1].

Let the likelihood function be L(a, fi). Sometimes it is easier to maximize L in two steps (first, maximize it with respect to fi, insert the maximizing value of fi back into L; second, maximize L with respect to a) than to maximize L simultaneously for a and fi. More precisely, define

L*(a) = L[a, fi(a)],

where fi(a) is defined as a root of

image262

(4.2.42)

 

(4.2.43)

 

We call L*(a) the concentrated likelihoodjunction of a. In this subsection we shall pose and answer affirmatively the question: If we treat L*(a) as if it were a proper likelihood function and obtain the limit distribution by (4.2.23), do we get the same result as (4.2.40)?

From Theorem 4.1.3 and its proof we have

 

image263
image264

where в+ lies between [o£, ІкріоУ] and в0. But we have

 

image265

Next, differentiating both sides of the identity

Подпись: (4.2.50)3 log L*{a) _ 3 log L[a, fla)] да да

image267 image268

with respect to a yields

image269 image270

Combining (4.2.51) and (4.2.52) yields

image271 Подпись: (4.2.54)

which implies

Finally, we have proved that (4.2.44), (4.2.49), and (4.2.54) lead precisely to the conclusion (4.2.40) as desired.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.