Advanced Econometrics Takeshi Amemiya

Relationships among lim E, AE, and plim

Let F„ be the distribution function of X„ and Fn —■* Fat continuity points of F. We have defined plim Xn in Definition 3.2.1. We define lim E and AE as

image198

Подпись: and

Подпись: (3.4.1)

Подпись: follows:
Подпись: lim EX„ = lim xdF„(x)

(3.4.2)

In words, AE, which reads asymptotic expectation or asymptotic mean, is the mean of the limit distribution.

These three limit operators are similar but different; we can construct examples of sequences of random variables such that any two of the three concepts either differ from each other or coincide with each other. We shall state relationships among the operators in the form of examples and theorems. But, first, note the following obvious facts:

(i) Of the three concepts, only plim X„ can be a nondegenerate random variable; therefore, if it is, it must differ from lim EX„ or AE X„.

(ii) If plim Хп = а,& constant, then AE Xn = a. This follows immediately from Theorem 3.2.2.

Example 3.4.1. Let X„ be defined by

X„ = Z with probability (n — 1 )/n

= n with probability l/n,

where Z ~ N{0, 1). Then plim X„ = Z, lim EXn = 1, and AE Xn = EZ = 0.

Example 3.4.2. Let X„ be defined by

X„ = 0 with probability (n — 1 )/n

= n2 with probability l/n.

Then plim X„ = AE X„ = 0, and lim EX„ = lim n = °°.

Example 3.4.3. Let X~ N(a, 1) and Yn ~ N(P, и-1), where РФ 0. Then X/Yn is distributed as Cauchy and does not have a mean. Therefore lim E(X/Y„) cannot be defined either. But, because Yn /?, AE(X/Yn) = a/P

by Theorem 3.2.7 (iii).

The following theorem, proved in Rao (1973, p. 121), gives the conditions under which lim E = AE.

Theorem 3.4.1. If EXnr < M for all n, then lim EXsn = AE Xs„ for any s < r. In particular, if EX2 < M, then lim EXn ~ AEX„. (Note that this con­dition is violated by all three preceding examples.)

We are now in a position to define two important concepts regarding the asymptotic properties of estimators, namely, asymptotic unbiasedness and consistency.

Definition 3.4.1. The estimator 0„ of 0 is said to be asymptotically unbi­ased if AE 0„ = 0. We call AE 0„ — 0 the asymptotic bias.

Note that some authors define asymptotic unbiasedness using lim E instead of AE. Then it refers to a different concept.

Definition 3.4.2. The estimator 0„ of 0 is said to be a consistent estimator if plim 0„ = 0.

Some authors use the term weakly consistent in the preceding definition, to distinguish it from the term strong consistency used to describe the property

e^e.12

In view of the preceding discussions, it is clear that a consistent estimator is asymptotically unbiased, but not vice versa.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.