Advanced Econometrics Takeshi Amemiya

Distribution Function

Definition 3.1.5. The distribution function F(x) of a random variable X(a>) is defined by

F(x) = P{o)Х(оз) < x).

Note that the distribution function can be defined for any random variable because a probability is assigned to every element of A and hence to {cojX(eo) < x) for any x. We shall write P{o)X(oj) < x} more compactly as P(X<x).

A distribution function has the properties:

(i) F(-«) = 0.

(ii) FM=1.

(iii) It is nondecreasing and continuous from the left.

[Some authors define the distribution function as F(x) = P{toX(a>) ё x}. Then it is continuous from the right.]

Using a distribution function, we can define the expected value of a random variable whether it is discrete, continuous, or a mixture of the two. This is done by means of the Riemann-Stieltjes integral, which is a simple generaliza­tion of the familiar Riemann integral. Let X be a random variable with a distribution function F and let Y = h(X), where A( •) is Borel-measurable.6 We define the expected value of Y, denoted by EY as follows. Divide an interval [a, b] into n intervals with the end points a — x„ < x, < . . . < x„_! < x„ = b and let x f be an arbitrary point in [x,, x,+, ]. Define the partial sum

= 2 h{xf )[F(xi+1) - F(xt)] (3.1.1)

1-0

associated with this partition oftheinterval [a, b]. If, for any e > 0, there exists a real number A and a partition such that for every finer partition and for any choice of xf, IS'n — AI < e, we call A the Riemann-Stieltjes integral and denote it by jbah{x) dF(x). It exists if A is a continuous function except possibly for a countable number of discontinuities, provided that, whenever its discontinu­
ity coincides with that of F, it is continuous from the right.7 Finally, we define

image174(3.1.2)

provided the limit (which may be +°° or —°°) exists regardless of the way a —*—oo and b-*<*>.

If dF/dxexists and is equal to /(x), F(xi+l) — F(x,) — /(x*)(xm — x,) for some x? Є [xt+i, x,] by the mean value theorem. Therefore

image175(3.1.3)

On the other hand, suppose X= ct with probability ph і =1,2,. . . , К. Take a < c, and cK < t, then, for sufficiently large n, each interval contains at most one of the cjs. Then, of the n terms in the summand of (3.1.1), only К terms containing cjs are nonzero. Therefore

image176(3.1.4)

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.