Advanced Econometrics Takeshi Amemiya

Statistical Decision Theory

We shall briefly explain the terminology used in statistical decision theory. For a more thorough treatment of the subject, the reader should consult Zacks (1971). Statistical decision theory is a branch of game theory that analyzes the game played by statisticians against nature. The goal of the game for statisti­cians is to make a guess at the value of a parameter (chosen by nature) on the basis of the observed sample, and their gain from the game is a function of how close their guess is to the true value. The major components of the game are 0, the parameter space; Y, the sample space; and D, the decision space (the totality of functions from Y to 0). We shall denote a single element of each space by the lowercase letters 0, у, d. Thus, if у is a particular observed sample (a vector of random variables), d is a function of у (called a statistic or an estimator) used to estimate 0. We assume that the loss incurred by choosing d when the true value of the parameter is 0 is given by the loss function L(d, 0).

We shall define a few standard terms used in statistical decision theory.

Risk. The expected loss EyL(d, 0) for which the expectation is taken with respect to у (which is implicitly in the argument of the function d) is called the risk and is denoted by jR(d|0).

Uniformly smaller risk. The estimator2 d, has a uniformly smaller risk than the estimator d2 if R(<Ai) Ш i?(d2|0) for all 0 Є 0 and R(&i) < R(i2) for at least one 0 Є 0.

Admissible. An estimator is admissible if there is no d in D that has a uniformly smaller risk. Otherwise it is called inadmissible.

Minimax. The estimator d* is called a minimax estimator if

max /?(d*|0) = min max i?(d|0).

0ЄЄ ІЄЛ 0ЄЄ

The minimax estimator protects the statistician against the worst pos­sible situation. If maxeee. R(d|0) does not exist, it should be replaced with supeee 7?(d|0) in the preceding definition (and min with inf).

Posterior risk. The expected loss EeL{&, 0) for which the expectation is taken with respect to the posterior distribution of в given у is called the posterior risk and is denoted by 7?(d|y). It obviously depends on the particular prior distribution used in obtaining the posterior distribution.

Bayes estimator. The Bayes estimator, given a particular prior distribution, minimizes the posterior risk 7?(d|y). If the loss function is quadratic, namely, L(d, 0) = (d — 0)' W(d — 0) where W is an arbitrary nonsingular matrix, the posterior risk Ев{й — 0)'W(d — 0) is minimized at d = Ee0, the posterior mean of 0. An example of the Bayes estimator was given in Section 1.4.4.

Regret. Let i?(d|0) be the risk. Then the regret W(d|0) is defined by

Щd|0) = 7?(d|0) - min i?(d|0).

лев

Minimax regret. The minimax regret strategy minimizes maxeee lF(d|0) with respect to d.

Some useful results can be stated informally as remarks rather than stating them formally as theorems.

Remark 2.1.1. A Bayes estimator is admissible.

Remark 2.1.2. A minimax estimator is either a Bayes estimator or the limit of a sequence of Bayes estimators. The latter is called a generalized Bayes estimator. (In contrast, a Bayes estimator is sometimes called a proper Bayes estimator.)

Remark 2.1.3. A generalized Bayes estimator with a constant risk is minimax.

Remark 2.1.4. An admissible estimator may or may not be minimax, and a minimax estimator may or may not be admissible.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.