Advanced Econometrics Takeshi Amemiya

An Alternative Derivation of the Constrained Least Squares Estimator

Define а К X (К — q) matrix R such that the matrix (Q, R) is nonsingular and R' Q = 0. Such a matrix can always be found; it is not unique, and any matrix
that satisfies these conditions will do. Then, defining A = (Q, R)', у = АД and Z = XA-1, we can rewrite the basic model (1.1.4) as

y = Xfi+u (1.4.7)

= XA-'A/H-ii = Zy + u.

If we partition у = (yj, У2)', where Уі = Q'fi and y2 = R'fi, we see that the constraints (1.4.1) specify y, and leave y2 unspecified. The vector y2 hasK— q elements; thus we have reduced the problem of estimating К parameters subject to q constraints to the problem of estimating К — q free parameters. Using y, = c and

A"1 = [Q(Q'Q)_I, R(R'R)_1], (1.4.8)

we have from (1.4.7)

у - XCKQ'Qr'c = XR(R'R)-1y2 + u. (1.4.9)

Let y2 be the least squares estimator of y2 in (1.4.9):

y2 - R'R(R, X'XR)~1R, X,[y - XQfQ'Q)"^]. (1.4.10)

Now, transforming from у back to fi by the relationship fi — A-1y, we obtain the CLS estimator of fi:

Подпись: (1.4.11)fi= RfR'X'XRj-'R'X'y

+ [I - R(R, X'XR)_1R'X'X]Q(Q'Q)_1c.

Note that (1.4.11) is different from (1.4.5). Equation (1.4.5) is valid only if X'X is nonsingular, whereas (1.4.11) can be defined even if X'X is singular provided that R' X ’ XR is nonsingular. We can show that if X' X is nonsingu­lar, (1.4.11) is unique and equal to (1.4.5). Denote the right-hand sides of (1.4.5) and (1.4.11) by Д and fi2, respectively. Then it is easy to show

[Rq,,X](A-&) = 0. (1.4.12)

Therefore fii = fi2 if the matrix in the square bracket above is nonsingular. But we have

Подпись:R'X'X"]|"_ _."l _ TR'X'XR R'X'XQ]

where the matrix on the right-hand side is clearly nonsingular because non­
singularity of X'X implies nonsingularity of R'X'XR. Because the matrix [R, Q] is nonsingular, it follows that the matrix

is nonsingular, as we desired.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.