Advanced Econometrics Takeshi Amemiya

Constrained Least Squares Estimator (CLS)

The constrained least squares estimator (CLS) of /?, denoted by Д is defined to be the value of P that minimizes the sum of squared residuals

S(P) = (y-XP)'(y-XP) (1A2)

under the constraints (1.4.1). In Section 1.2.1 we showed that (1.4.2)Js mini­mized without constraint at the least squares estimator fi. Writing S(fi) for the sum of squares of the least squares residuals, we can rewrite (1.4.2) as

S(P) = S(P) + (P-P)'X'X(P-P). (1.4.3)

Instead of directly minimizing (1.4.2) under (1.4.1), we minimize (1.4.3) under ^1.4.1), which is mathematically simpler.

Put p — P = 6 and Q'ji—c = y. Then, because S(P) does not depend on P, the problem is equivalent to the minimization of S'X'XS under Q'S = y. Equating the derivatives of ' X' X<H - 2A' (Q' ^ — y) with respect to S and the ^-vector of Lagrange multipliers A to zero, we obtain the solution

S = (X' X)- *Q[Q' (X' X)- ’Q]- ‘y. (1.4.4)

Transforming from S and у to the original variables, we can write the mini­mizing value P of S(P) as

p = p-(X'X)~lQ[Q' (X'X)-!Q]-l(Q'P - с). (1.4.5)

The corresponding estimator of a2 can be defined as

o2=T~y-xp)’{y-Xfi). (1.4.6)

It is easy to show that the P and a2 are the constrained maximum likelihood estimators if we assume normality of u in Model 1.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.