A COMPANION TO Theoretical Econometrics

LR, W, and LM tests

We give an account of the three classical tests in the context of the general linear regression model introduced in (25.1) above. We take R to be a (p x K) known matrix of rank p < K. Consider three estimators of в under the exact linear restric­tions, under inequality restrictions, and when в £ Rp (no restrictions). Denote these by _, U, and S, respectively. We note that S = (X'Q-1X )-1(X'Q-1y) is the ML (GLS) estimator here. Let (X'Q-1X) = G, and consider the following optimization programs:

max - (y - Хв)'0 1(y - Хв), subject to Re > r, (25.13)

and the same objective function but with equality restrictions. Denote by X and ' the Lagrange multipliers, respectively, of these two programs (conventionally, X = 0 for S). Then:

U = S + G-1R'X/2, and _ = S + G-1R,'/2. (25.14)

See GHM (1982). Employing these relations it is straightforward to show that the following three classical tests are identical:

LR = -2 log LR = 2($ - %), (25.15)

where L and $ are the logarithms of the maxima of the respective likelihood functions;

<^LM = min (X - X)'RG :R'(X - ')/4, subject to X < 0 (25.16)

is the Kuhn-Tucker/Lagrange multiplier (LM) test computed at X, and,

is the Wald test. In order to utilize the classical results stated above for problems in (25.3), or (25.8), it is customary to note that the LR test in (25.15) above is identical to the LR test of the following problem:

S = p + v

Rp > r

v ~ N(0, G-1) (25.18)

For this problem £LR is the optimum of the following QP problem:

max - (p - S)'G(P - S) + (p - S)'G(P - S) subject to Rp > r. (25.19)

This is identical to the one-sided multivariate problem in (25.3). It also suggests that the context for applications can be very general indeed. All that is needed is normally distributed estimators, S, which are then projected on to the cone defined by the inequality restrictions in order to obtain the restricted estimator p.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.