A COMPANION TO Theoretical Econometrics

Collinearity in the linear regression model

Denote the linear regression model as

y = Xp + e, (12.4)

where y is a T x 1 vector of observations on the dependent variable, X is a T x K non-stochastic matrix of observations on K explanatory variables, P is a K x 1 vector of unknown parameters, and e is the T x 1 vector of uncorrelated random errors, with zero means and constant variances, o2.

In the general linear model exact, or perfect, collinearity exists when the columns of X, denoted xi, i = 1,..., K, are linearly dependent. This occurs when there is at least one relation of the form a1x1 + a2x2 + ... + aKxK = 0, where the ai are constants, not all equal to zero. In this case the column rank of X is less than K, the normal equations X'Xp = X'y do not have a unique solution, and least squares estimation breaks down. Unique best linear unbiased estimators do not exist for all K parameters. However, even in this most severe of cases, all is not lost. Consider equation (12.1), yt = p1 + p2xt2 + p3xt3 + et. Suppose that a2x2 + a3x3 = 0, or more simply, x2 = ax3. Substituting this into (12.1) we obtain yt = p1 + p2(ax3) + p3xt3 + et = p1 + (ap2 + P3)xt3 + et = p1 + yxt3 + et. Thus we can obtain a best linear unbiased estimator of у = ap2 + p3, a linear combination of the parameters. The classic paper by Silvey (1969) provides expressions for determining which linear combinations of parameters are estimable.

Exact collinearity is rare, and easily recognized. More frequently, one or more linear combinations of explanatory variables are nearly exact, so that a1x1 + a2x2 +... + aKxK ~ 0. We now examine the consequences of such near exact linear dependencies.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.