 Using gret l for Principles of Econometrics, 4th Edition

# Polynomials

One way to allow for nonlinear relationships between independent and dependent variables is to introduce polynomials of the regressors into the model. In this example the marginal effect of an additional dollar of advertising is expected to diminish as more advertising is used. The model becomes:

salesi = ві + e2pricei + faadverti + e4advert  + e^ i = 1, 2,..., N (5.6)

To estimate the parameters of this model, one creates the new variable, advert2, adds it to the model, and uses least squares. OLS, using observations 1-75
Dependent variable: sales

 Coefficient Std. Error t-ratio p-value const 109.719 6.79905 16.1374 0.0000 price -7.64000 1.04594 -7.3044 0.0000 advert 12.1512 3.55616 3.4170 0.0011 a2 2.76796 0.940624 2.9427 0.0044

Mean dependent var 77.37467 S. D. dependent var 6.488537

Sum squared resid 1532.084 S. E. of regression 4.645283

F(3,71) 24.45932 P-value(F) 5.60e-11

Log-likelihood -219.5540 Akaike criterion 447.1080

Schwarz criterion 456.3780 Hannan-Quinn 450.8094

The variable a2, which is created by squaring advert, is a simple example of what is sometimes referred to as an interaction variable. The simplest way to think about an interaction variable is that you believe that its effect on the dependent variable depends on another variable-the two variables interact to determine the average value of the dependent variable. In this example, the effect of advertising on average sales depends on the level of advertising itself.

Another way to square variables is to use the square command

This creates a variable sq_advert and adds it to the variable list. Notice that gretl just adds the sq_ prefix to the existing variable name. You can square multiple variables at a time by just by adding them to the square command’s list.

Добавить комментарий

## Using gret l for Principles of Econometrics, 4th Edition

### Simulation

In appendix 10F of POE4, the authors conduct a Monte Carlo experiment comparing the performance of OLS and TSLS. The basic simulation is based on the model y = x …

### Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis is that these estimates are consistent-that is, that the requirement of orthogonality of the model’s errors …

### Time-Varying Volatility and ARCH Models: Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas - ticity) …

## Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

## Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua