Using gret l for Principles of Econometrics, 4th Edition

Heteroskedasticity

The simple linear regression models of chapter 2 and the multiple regression model in Chapter 5 can be generalized in other ways. For instance, there is no guarantee that the random variables of these models (either the yi or the ei) have the same inherent variability. That is to say, some observations may have a larger or smaller variance than others. This describes the condition known as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.

yi = ві + в2Хі2 +------- + вкXiK + ei i = 1,2,... ,N (8.1)

where yi is the dependent variable, xik is the ith observation on the kth independent variable, k = 2,3,..., K, ei is random error, and въ в2,..., вК are the parameters you want to estimate. Just as in the simple linear regression model, ei, have an average value of zero for each value of the independent variables and are uncorrelated with one another. The difference in this model is that the variance of ei now depends on i, i. e., the observation to which it belongs. Indexing the variance with the i subscript is just a way of indicating that observations may have differ­ent amounts of variability associated with them. The error assumptions can be summarized as ei|xi2,Xi3,.. .XiK iid N(0,CT2).

The intercept and slopes, в1, в2, ..., вК, are consistently estimated by least squares even if the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect heteroskedasticity are considered. Also, statistically valid ways of estimating the parameters of 8.1 and testing hypotheses about the вs when the data are heteroskedastic are explored.

Добавить комментарий

Using gret l for Principles of Econometrics, 4th Edition

Simulation

In appendix 10F of POE4, the authors conduct a Monte Carlo experiment comparing the performance of OLS and TSLS. The basic simulation is based on the model y = x …

Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis is that these estimates are consistent-that is, that the requirement of orthogonality of the model’s errors …

Time-Varying Volatility and ARCH Models: Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas - ticity) …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua

За услуги или товары возможен прием платежей Онпай: Платежи ОнПай