Using gret l for Principles of Econometrics, 4th Edition

. Estimating a Regression

The regression is also based on the University town real estate data. The regression is:

price = ві + 61utown + P2sqft + 7(sqft x utown)

+вз age + 62pool + 63fpla. ce + e

The estimated model is

Подпись: Mean dependent var 247.6557 Sum squared resid 230184.4 R2 0.870570 F(6, 993) 1113.183 Log-likelihood -4138.379 Schwarz criterion 8325.112
image209

OLS, using observations 1-1000
Dependent variable: price

Coefficient

Std. Error

t-ratio

p-value

const

24.5000

6.19172

3.9569

0.0001

utown

27.4530

8.42258

3.2594

0.0012

sqft

7.61218

0.245176

31.0477

0.0000

sqft_utown

1.29940

0.332048

3.9133

0.0001

age

-0.190086

0.0512046

-3.7123

0.0002

pool

4.37716

1.19669

3.6577

0.0003

fplace

1.64918

0.971957

1.6968

0.0901

The coefficient on the slope indicator variable sqft x utown is significantly different from zero at the 5% level. This means that size of a home near the university has a different impact on average home price. Based on the estimated model, the following conclusions are drawn:

• The location premium for lots near the university is $27,453

• The change in expected price per additional square foot is $89.12 near the university and $76.12 elsewhere

• Homes depreciate $190.10/year

• A pool is worth $4,377.30

• A fireplace is worth $1649.20

The script that generates these is:

1 scalar premium = $coeff(utown)*1000

2 scalar sq_u = 10*($coeff(sqft)+$coeff(sqft_utown))

3 scalar sq_other = 10*$coeff(sqft)

4 scalar depr = 1000*$coeff(age)

5 scalar sp = 1000*$coeff(pool)

6 scalar firep = 1000*$coeff(fplace)

7 printf "n University Premium = $%8.7gn

8 Marginal effect of sqft near University = $%7.6gn

9 Marginal effect of sqft elsewhere = $%7.6gn

10 Depreciation Rate = $%7.2fn

11 Pool = $%7.2fn

12 Fireplace = $%7.2fn",premium, sq_u, sq_other, depr, sp, firep

Notice that most of the coefficients was multiplied by 1000 since home prices are measured in $1000 increments. Square feet are measured in increments of 100, therefore its marginal effect is multiplied by 1000/100 = 10. It is very important to know the units in which the variables are recorded. This is the only way you can make ecnomic sense from your results.

Добавить комментарий

Using gret l for Principles of Econometrics, 4th Edition

Simulation

In appendix 10F of POE4, the authors conduct a Monte Carlo experiment comparing the performance of OLS and TSLS. The basic simulation is based on the model y = x …

Hausman Test

The Hausman test probes the consistency of the random effects estimator. The null hypothesis is that these estimates are consistent-that is, that the requirement of orthogonality of the model’s errors …

Time-Varying Volatility and ARCH Models: Introduction to Financial Econometrics

In this chapter we’ll estimate several models in which the variance of the dependent variable changes over time. These are broadly referred to as ARCH (autoregressive conditional heteroskedas - ticity) …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua

За услуги или товары возможен прием платежей Онпай: Платежи ОнПай