The welding of aluminium and its alloys

The welding of aluminium and its alloys

Gene Mathers

Engineering is not an exact science and, of the many disciplines within engi­neering, welding is probably one of the most inexact - rather more of an art than a science. Much of the decision-making is based on experience and a ‘gut feel’ for what is or is not acceptable. When the difficulties of shop floor or site control are taken into account and the occasional vagaries of the welder and the sometimes inadequate knowledge of supervisory staff are added, the problems of the practising shop floor engineer can appear overwhelming. I hope that some of this uncertainty can be dispelled in this book, which is aimed at those engineers with little or no knowledge of metallurgy and perhaps only the briefest acquaintance with the welding processes. It does not purport to be a metallurgical or processes textbook and I make no apology for this. Having lectured fairly extensively on welding technology, I have come to realise that most engineers think of metals as being composed of a large number of small billiard balls held together by some form of glue. I have attempted to describe the metallur­gical aspects of the aluminium alloys in these terms. I have therefore kept the contents descriptive and qualitative and have avoided the use of mathematical expressions to describe the effects of welding.

The book provides a basic understanding of the metallurgical principles involved in how alloys achieve their strength and how welding can affect these properties. I have included sections on parent metal storage and prepa­ration prior to welding and have also described the more frequently encoun­tered processes. There are recommendations on welding parameters that may be used as a starting point for the development of a viable welding pro­cedure. Also included are what I hope will be useful hints and tips to avoid some of the pitfalls of welding these sometimes problematic materials.

I would like to thank my colleagues at TWI, particularly Bob Spiller, Derek Patten and Mike Gittos, for their help and encouragement during the writing of this book - encouragement that mostly took the form of ‘Haven’t you finished it yet?’. Well, here it is. Any errors, inaccuracies or omissions are mine and mine alone.

Gene Mathers


The welding of aluminium and its alloys

Alloy designations: wrought products

Table A.4 BS EN BS EN Old BS/DTD Temperature (°C) numerical chemical number designation designation Liquidus Solidus IVIdUng range Al 99.99 1 660 660 0 AW-1080A Al 99.8 1A AW-1070A …

Principal alloy designations: cast products

Table A.3 BS EN numerical designation BS EN chemical designation Old BS number ANSI designation Temperature (°C) Liquidus Solidus Melting range Al 99.5 LM0 640 658 18 AC-46100 Al Si10Cu2Fe …

Physical, mechanical and chemical properties at 20°C

Table A.2 Property Aluminium Iron Nickel Copper Titanium Crystal structure FCC BCC FCC FCC HCP Density (gm/cm3) 2.7 7.85 8.9 8.93 4.5 Melting point (°C) 660 1536 1455 1083 1670 …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.