A.2 Solving and estimating rational expectations models

To make the exposition self-contained, this appendix illustrates solution and estimation of simple models with forward looking variables—the illustration being the hybrid ‘New Keynesian Phillips curve’. Finally, we comment on a problem with observational equivalence, or lack of identification within this class of models.

A sufficiently rich data generating process (DGP) to illustrate the tech­niques are

Apt = bp1EtApt+i + 6p1Apt-i + bp2xt + £pt, (A.9)

xt = bxxt-1 + £xt, (A.10)

where all coefficients are assumed to be between zero and one. All of the techniques rely on the law of iterated expectations,

EtEt+kxt+j = Etxt+j, к < j,

saying that your average revision of expectations, given more information, will be zero.

A.2.1 Repeated substitution

This method is the brute force solution, and therefore cumbersome. But since it is also instructive to see exactly what goes on, we begin with this method.

We start by using a trick to get rid of the lagged dependent variable, following Pesaran (1987, pp. 108-109), by implicitly defining nt as

Apt = nt + aApt-i, (A.11)

where a will turn out to be the backward stable root of the process of Apt. We take expectations one period ahead

EtApt+i = Etnt+i + aEtApt,

EtApt+i = Etnt+i + ant + a^Apt-i.

Next, we substitute for EtApt+i into original model: nt + aAp_i = bfpi (Et^t+i + ant + a2_1Apt_i) + bpiAp— + bp2xt + £pt




1 - bpia



Etnt+i +






1 - bPia


Подпись: +Подпись: xt +

bp2 [114]


1 - bpia

The parameter a is defined by

Подпись: or Подпись: a2 f a + f bfpi bfpi Подпись: 0 Подпись: (A.12)

bpia2 - a + bpi = 0

Подпись: ai a2 Подпись: (A.13)

with the solutions

Подпись: ai Подпись: < 1.

The model will typically have a saddle-point behaviour with one root bigger than one and one smaller than one in absolute value. In the following we will use the backward stable solution, defined by:


In passing it might be noted that the restriction bbpi = 1 - bfpi often imposed in the literature implies the roots

Подпись: nt Подпись: bf bpi 1 - bfpiai Подпись: Et nt+i + Подпись: bp2 1 - bfpiai Подпись: xt + Подпись: 1 1 - bfpiai Подпись: £pt.

as given in (A.13) as before. We choose |ai| < 1 in the following. So we now have a pure forward-looking model

Finally, using the relationship

Подпись: ai + a21



between the roots,1 so:

Подпись: (A.14)

Подпись: 1 - bpiai = 6pi«2,Подпись: bp1a2Подпись: 1Подпись: nt = YEtnt+1 + 5xt + Vpt.image318the model becomes

£pt (A.15)


Following Davidson (2000, pp. 109-110), we now derive the solution in two steps:

1. Find Etnt+i.

2. Solve for nt.

Find Etnt+i Define the expectations errors as:

Подпись: (A.17)nt+i = nt+i — Etnt+i.

We start by reducing the model to a single equation:

nt = Ynt+i + SbxXt-i + S£xt + Vpt — Ynt+i.

Solving forwards then produces:

nt = Y(Y^t+2 + Sbxxt + 5ext+i + Vpt+i - YYt+2)

+ SbxXt-i + S£xt + vpt — Y'Qt+i = (SbxXt-i + S£xt + Vpt — YVt+i)

+ Y (SbxXt + S£xt+i + vpt+i — YVt+2) + (Y )2nt+2


— ^~~^(Y)j (SbxXt+j-i + b£xt+j + vpt+j — YYt+j+i) + (Y)n+int+n+i. j=0

By imposing the transversality condition:

lim (Y)n+int+n+i = 0

and then taking expectations conditional at time t, we get the ‘discounted solution’:


Et nt+i = ^~~1(Y)j (SbxEtXt+j + SEt£xt+j+i + Etvpt+j+i — YEtVt+j+2) j=0


= J2(y )j (sbxEtXt+j). [115]

However, we know the process for the forcing variable, so:

Et-ixt = bxxt-,

Etxt = xt,

Etxt+1 bxxt,

Etxt+2 = Et(Et+lxt+2) = Etbxxt+1 = b“Xxt,

Etxt+j = bj xt.

We can therefore substitute in:


Etnt+i = J2(Y)j (Sbxbx xt)



= Sb^2 (Ybx)j xt j=0 Sbx

Подпись: nt

Подпись: Y Подпись: Sbx 1 - Ybx Подпись: xt + Sxt + vpt.

lEt nt+i + 5xt + vpt


Solve for nt Finally, using (A.11) and (A.16) we get the complete solution:

Добавить комментарий


Inflation equations derived from the P*-model

The P*-model is presented in Section 8.5.4. The basic variables of the model are calculated in much the same way for Norway as for the Euro area in the previous …

Forecast comparisons

Both models condition upon the rate of unemployment ut, average labour productivity at, import prices pit, and GDP mainland output yt. In order to investigate the dynamic forecasting properties we …

The NPCM in Norway

Consider the NPCM (with forward term only) estimated on quarterly Norwegian data[65]: Apt = 1.06 Apt+1 + 0.01 wst + 0.04 Apit + dummies (7.21) (0.11) (0.02) (0.02) x2(10) = …

Как с нами связаться:

тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта:

За услуги или товары возможен прием платежей Онпай: Платежи ОнПай