ТЕХНОЛОГИИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

Определение средней и насыпной плотности

Под средней плотностью материалов пони­мают отношение массы образца в сухом состоянии к его объему. Для материалов, представляющих собой куски различной крупности (сыпучие материалы), применяют понятие насыпной плотности, представляющей собой отношение массы материала в насыпном состоя­нии к его объему.

Все основные свойства теплоизоляционных материа­лов связаны с их пористостью, но самую непосредствен­ную связь с пористостью имеет средняя (насыпная) плотность. Знание этой характеристики позволяет су­дить о теплозащитных свойствах теплоизоляционного материала. По величине средней плотности теплоизоля­ционные материалы делят на марки: 15, 25, 35, 50, 75, 100, 125, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.

Маркой считают наибольшее значение средней плот­ности в пределах одного из вышеприведенных интерва­лов. Например, материал со средней плотностью 310 кг/м3 относят к марке 350, со средней плотностью 27 кг/мч — к марке 35 и т. п.

Все теплоизоляционные материалы можно разделить на три группы: жесткие (штучные теплоизоляционные материалы, выпускаемые в виде изделий определенной заданной формы), гибкие (в виде крупноразмерных ма­тов, матрацев и т. п.) и рыхлые (минеральная и стек­лянная вата, вспученные перлит и вермикулит, стекло - пор).

Методы определения средней (насыпной) плотности различных видов теплоизоляционных материалов в зна­чительной мере отличаются друг от друга.

Определение средней плотности жестких теплоизоля­ционных материалов осуществляют измерением линей­ных размеров и взвешиванием самих изделий или изме­рением и взвешиванием образцов, выпиливаемых, вы­сверливаемых или вырезаемых из различных частей изделий. При этом обычно образцы предварительно вы­сушивают при температуре 105—110° С. Средняя плот­ность (кг/м3)

Pep=m/V,:

Где M — масса образца или изделия, кг; V—объем образца или изделия, м3.

При определении средней плотности изделия в есте­ственно влажном состоянии применяют формулу

M_____

Рвл — V(1 +0,01 Wa)'

Где Wa — абсолютная влажность материала, по массе, %.

Размеры образцов и изделий находят с помощью металлического измерительного инструмента (линейки, штангенциркуля). Длину и ширину изделий измеряют не менее чем в трех местах — у краев и в середине, А толщину в пяти-шести местах. Например, толщину фибролитовых плит измеряют в шести точках; на рас­Стоянии 100 мм от каждого края и в двух местах по
Продольной осевой линии плиты. Измерение толщины может производиться штангенциркулем или специаль­ным прибором — толщиномером (рис. 7). Толщиномер применяют^ для измерения толщины торфяных, жестких минераловатных и теплоизоляционных древесноволок­нистых плит. Точность измерения толщины плит при использовании штангенциркуля и толщиномера состав­ляет 0,1 мм, а при использовании линейки—1 мм.

Определение средней и насыпной плотности

Рис. 7. Толщиномер: Рис. 8. Прибор для определе-

/ — игла с делениями; 2 — ния толщины эластичных мате - трубка; з — спорный диск риалов под нагрузкой.

Объем образца или изделия вычисляют как сред­нюю арифметическую величину всех проведенных изме­рений.

Определение средней и насыпной плотности

Среднюю плотность партии материала вычисляют как среднюю арифметическую величину не менее, чем трех определений. При этом взвешивание образцов hpo - изводят с точностью до 0,1 г, а изделий — до 1 г.

Определение средней плотности гибких теплоизоля­ционных материалов ведут следующим образом. Из раз­ных мест каждого из трех полотнищ войлока, отобран­ных для испытаний, вырезают по три образца размером 100 X 100 мм. Взвешенный с точностью до 0,01 г обра­зец укладывают на основание специального прибора (рис. 8) [1]. Пластинку 7 массой 0,5 кг подводят вплот­ную к пластинке 6 и закрепляют винтом 5. Затем пла­стинки 7 я 6 опускают вниз, не доводя нижнюю поверх­ность пластинки 7 на 1—2 см до поверхности образца, и закрепляют их винтом 4. Ослабив винт 5, опускают пластинку 7 на поверхность образца, оставляют ее в этом положении 5 мин, после чего с помощью стрелки I производят отсчет по шкале 2 и определяют толщину образцов войлока под давлением 0,0005 МПа. Подвиж­ная пластина 3 используется и при других испытаниях минераловатных изделий.

Средняя плотность войлока (кг/м3)

Т.'

Рср_ 7(1 +0,01 W)'

Средняя плотность партии войлока будет характери­зоваться средней арифметической величиной девяти определений (девять образцов из трех изделий).

Средняя (насыпная) плотность рыхлых теплоизоля­ционных материалов волокнистого строения зависит от многих факторов. Например, на среднюю плотность ми­неральной ваты оказывает влияние толщина волокон, количество «корольков» (стекловидных невытянувших - ся в волокна включений шаровидной или грушевидной формы размером более 0,25 мм), степень уплотнения ваты. Для получения сравнимых результатов среднюю плотность волокнистых материалов определяют под постоянным давлением. Например, среднюю плотность минеральной ваты определяют в специальном приборе (рис. 9) под давлением 0,002 МПа. С этой целью берут пять навесок ваты по 0,5 кг каждая. Взвешивание про­изводят с точностью до 1 г. Вата для каждой навески отбирается как средняя проба (из пяти упаковочных мест отбирают по 0,5 кг ваты).

Определение средней и насыпной плотности

Рис. 9. Прибор для определения Рис. 10. Пе-

Средней плотности рыхлых (волок - сочный объ - нистых) теплоизоляционных мате - емомер - риалов

І

ЖВ

Массу, определяют среднюю плотность. Среднюю плот­ность данной партии ваты вычисляют как среднее ариф­метическое значение по результатам пяти определений.

Насыпную плотность зернистых и порошкообразных теплоизоляционных материалов определяют путем взве­шивания их в мерных сосудах. Размеры мерного сосуда в зависимости от размеров зерен материала выбирают По табл. 1.

Навеску ваты слоями укладывают в металлический цилиндр 1. Сверху на вату с помощью подъемного устройства 4 опускают металлический диск 2 массой 7 кг, что соответствует давлению на вату 0,002 МПа. Под нагрузкой вату выдерживают 5 мин и затем опре­деляют высоту слоя ваты с помощью шкалы, нанесен­ной на стержне 3. Вычисляют объем ваты и, зная ее

Таблица 1

Размеры цилиндра, мм

Предельная крупность зерен

Объем мерного

Материала, мм

Цилиндра, л

Диаметр

Высота

До 5

1

108

108

10

' 2

137

136

20

5

185

186

До 40

10

Более 40

So

Материал в сосуд засыпают с высоты 5 см с помощью воронки или лотка до образования конуса. Избыток ма­териала снимают металлической линейкой без уплотне­ния. Сосуд, масса которого известна, с материалом взве­шивают с точностью до 1 г и по известной формуле опре­деляют насыпную плотность материала.

Среднюю плотность кусков (зерен) рыхлого тепло­изоляционного материала (например, перлитового щеб­ня, керамзитового гравия и т. п.) определяют с помощью песочных объемомеров или погружением в мерные ци­линдры, заполненные водой.

При использовании песочного объемомера (рис. 10) зерно испытуемого материала помещают внутрь прибо­ра. Объем зерна будет равен разности между уровнями песка в приборе с образцом и без него.

Более точно объем куска (зерна) материала можно измерить при погружении его в воду, т. е. по объему вытесненной им воды. С этой целью высушенный ДО постоянной массы и предварительно взвешенный с точ­ностью до 0,1 г образец парафинируют (покрывают тон­ким слоем расплавленного парафина), а затем погру­жают в воду, находящуюся в мерном цилиндре. Как правило, средняя плотность кусков пористых материа­лов ниже плотности воды, поэтому полное погружение образца достигается с помощью металлического диска, объем которого известен. Объем образца вычисляют по количеству вытесненной им воды. При этом учитывают объем металлического диска и парафина. Объем пара­фина

V=т/0,93,

Где т — масса парафина, нанесенного на образец, г; 0,93 — плотность парафина, г/см3.

Зная объе. м образца и его массу, подсчитывают сред­нюю плотность данного куска. Для определения сред­ней плотности «в куске» партии материала производят несколько десятков определений и вычисляют среднюю арифметическую величину.

Определение средней плотности текучих формовоч­ных масс (растворных смесей, пеномасс, шликеров) осуществляют для контроля технологических процессов при производстве тех или иных теплоизоляционных ма­териалов. Это, например, требуется при изготовлении изделий из ячеистых бетонов, из пенокерамических или Известково-кремнеземистых масс, и т. п.

Среднюю плотность смесей, находящихся в жидко - текучем состоянии, определяют в цилиндрическом со­суде емкостью 1 л. Сосуд наполняют испытуемой смесью, избыток смеси срезают шпателем или метал­лической линейкой и взвешивают сосуд с массой с точ­ностью до 1 г. Вычитая из общей массы массу' сосуда, узнают массу смеси. Плотность смеси вычисляют как среднее арифметическое по результатам двух измере­ний.

Если испытывают смесь с малой подвижностью (до 6 см), то ее уплотняют на вибростоле в течение 30 с Или на встряхивающем столике, производя 120 ударов (встряхиваний). В этом случае на сосуд сверху наде­вают специальную насадку, позволяющую заполнять мерный сосуд с некоторым избытком. После уплотнения насадка снимается, а избыток смеси удаляется метал» лической линейкой.

Определение средней плотности мастичных материа­лов. Отобранную пробу материала затворяют водой до нормальной (рабочей) консистенции, которую опреде­ляют с помощью стандартного конуса. Нормальная кон­систенция раствора соответствует глубине погружения конуса на 100+10 мм. Затем в специальные формы, предварительно очищенные и смазанные, размером 200 X 50 X 25 мм укладывают испытуемую смесь, уплот­няя ее в углах формы кончиком ножа и заглаживая поверхность ножом или шпателем заподлицо с бортами формы.

Заполненные формы помещают в сушильный шкаф, где образцы высушивают до постоянной массы, затем Их вынимают из форм и отшлифовывают.

Полученные образцы измеряют с точностью до 0,1 мм, взвешивают с точностью до 0,1 г и вычисляют среднюю плотность, кг/м3,

Рср=^М000,

Где тс — масса сухого образца, г; V — объем образца, См3.

ТЕХНОЛОГИИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ

Термопанели — качественный материал для отделки и утепления дома

Современные термопанели выделяются отменными эксплуатационными качествами, что делает их идеальным материалом для отделки зданий. Вопрос с утеплением дома всегда стоял остро. Производители предлагают множество строительных материалов, но большинство людей предпочитают …

Негорючая изоляция и базальтовая вата

При возведении зданий любого предназначения необходимо уделять внимание пожарной безопасности. Для решения этой проблемы подойдет негорючая изоляция, базальтовая вата.
Негорючие теплоизоляционные материалы стали неотъемлемой частью профильного рынка.

Средства теплоизоляции: зачем они нужны

Для обеспечения эффективного энергосбережения необходимо использовать качественные средства теплоизоляции. При выборе современных материалов реально снизить тепловые потери до 70%! Соответственно – уменьшить затраты на отопление дома/квартиры.

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.