ТЕОРИЯ сварочных процессов

Вредные примеси в металле при сварке и их удаление

Выше (см. гл. 9) уже рассмотрено поведение отдельных компонентов сплавов и их влияние на качество получаемого металла шва. Однако в заключение надо сделать обобщение влияния на качество сварных соединений, так называемых «вредных» примесей, к которым относятся сера, фосфор, кисло­род, азот, водород, а в некоторых случаях н углерод.

Сера — всегда вредная примесь при сварке металлов, так как она образует относительно легкоплавкие эвтектики Me — — MeS, что создаст возможность образования «горячих» или кристаллизационных трещин в металле шва. Ее содержание в металле и в сварочных материалах всегда следует жестко лими­тировать.

Снижение вредного влияния серы достигается ее переводом из сульфидов железа в сульфиды с более высокой температурой плавления (MnS; Гпл=1883 К; CaS; Г„л= 2273 К), с тем чтобы она не могла участвовать в процессе кристаллизации, образуя неметаллические включения, еще в жидком металле сварочной ванны (Гпл=1800 К).

Это достигается при введении в сварочную ванну достаточно­го количества марганца. Кальций вводят в металл ванны в виде силикокальция через электродные покрытия или порошковую проволоку.

Общее снижение содержания серы в металле при сварке возможно при сильно основных шлаках. Бескислородные фто - ридные флюсы также способствуют удалению серы из металла в результате образования летучих фторидов металла (FeF2, FeF3) и твердых сульфидов:

CaFs + FeS-^CaS + FeFst.

Сера удаляется при электрошлаковой сварке и переплаве металлов.

Фосфор — почти всегда вредная примесь в металлах, снижа­ющая их пластичность. Так, при кристаллизации стали фосфор образует ряд соединений с железом (БезР, Fe2P, FeP и FeP2), отличающихся своей хрупкостью, кристаллы которых могут стать зародышами холодных трещин. Содержание фосфора в металле шва при дуговой сварке понизить практически не удает­ся, так как он удаляется в окислительных шлаках, а сварочные шлаки — восстановительные. Концентрация фосфора в шве снижается только при электрошлаковой сварке.

При сварке медных сплавов фосфор не представляет собой вредную примесь, так как он способен раскислять металл, обра­зуя летучий оксид Р2О5:

5Cu20 + 2Cu3P-> 16Cu + P205f.

Кислород — вредная примесь в металле при сварке, снижаю­щая пластические свойства металла, поэтому при всех видах сварки предусматривается процесс раскисления металла шва до допустимой нормы. При сварке металлов высокой активности (Al, Ti, Zr) следует создавать бескислородную атмосферу — аргон, гелий, вакуум, галидные флюсы, так как раскислителей для таких металлов подобрать нельзя.

Однако при сварке конструкционных сталей следует сохра­нять некоторую окисленность металла для уменьшения раство­римости водорода.

Азот поглощается металлом сварочной ванны из атмосферы дугового промежутка, в котором он находится в основном в атомарном и частично в ионизированном состояниях. Раствори­мость азота в жидком металле выше, чем в твердом, и в процессе кристаллизации металла шва он может выделяться в газообраз­ном состоянии, образуя поры.

При кристаллизации металла сварочной ванны азот образует почти со всеми металлами соединения — нитриды различной степени устойчивости (см. рис. 9.33). Особенно устойчивые нитриды образуют ^-металлы IVB, VB, VIB групп периоди­ческой системы. Нитриды железа Fe4N, Fe2N образуют очень хрупкие игольчатые кристаллы, разрушение которых приводит к зарождению холодных трещин (замедленное разрушение). Из промышленных металлов только медь не дает устойчивых нитридов и поэтому ее можно сваривать в атмосфере азота (см. п. 10 3).

Однако азот не всегда представляет собой вредную примесь и в некоторых сталях аустенитного класса содержание его доводят до 0,3...0,4%.

Водород при сварке — всегда вредная примесь («водородная хрупкость»).

Источники водорода при сварке металлов: 1) водород, по­глощенный металлом из атмосферы дугового разряда, и 2) водо­род, растворенный в основном металле.

Водород, поглощенный из атмосферы дугового разряда, в которой он находится в атомарном и в ионизированном состоя­ниях, при кристаллизации резко понижает свою растворимость и, выделяясь из металла, вызывает возникновение пор и трещин.

Водород, содержащийся в основном металле, может нахо­диться в состоянии твердого раствора внедрения — диффузион­но-подвижный водород, а также находиться в связанном состоя­нии — гидридный водород. Водород в молекулярном состоянии находится в микронесплошностях металла.

Диффузионно-подвижный водород может перемещаться в ме­талле в результате концентрационной или термической диффу­зии, создающейся вследствие градиента температур. Последний вид диффузии описывается уравнением

dm = -Dc04^^Sdt, (10.17)

RTZ dy

[Н],% a) . . - s.

Вредные примеси в металле при сварке и их удаление

1 1 1 1

L - J J

V/I

'

I

1

I

і

0,030

0,026 0,022 0,01b 0,014 0,010 0,000 0,002

12 8 4 0 4 8 у, MM 30 20 10 0 10 20 y, HM

Рис 10 18 Распределение водорода в титане (а) и в меди (б) после сварки

где D — коэффициент диффузии, зависящий от температуры; Со — исходная концентрация водорода; АН — разность энтальпий

dT

растворения водорода в данном металле; градиент тем­ператур; S — сечение потока диффузии; t — время.

Если АН>0 (для А1; Си; Fe и др.), то направление потока термодиффузии противоположно потоку теплоты, что характерно для металлов, не образующих гидридов, у которых раствори­мость растет с повышением температуры. Если ДЯ<0 (Ті; Zr; V; Nb и др.), то направление потока термодиффузии совпадает с направлением потока теплоты, что характерно для гидридо­образующих металлов. В результате образования сварного сое­динения в условиях высоких градиентов температур возникает неравномерная концентрация водорода, которая может быть уст­ранена последующей термической обработкой. Примеры распре­деления концентраций водорода после сварки приведены на рис. 10.18, а, б.

Как видно из приведенных графиков, для металлов, не об­разующих гидридов, максимальная концентрация водорода на­блюдается вблизи линии сплавления (штриховые линии на рисун­ке) , а для гидридообразующих — в зоне термического влияния. Таким образом, при средней относительно небольшой концентра­ции водорода в металле в сварном соединении возникают опас­ные зоны повышенной хрупкости.

К основным путям снижения содержания водорода в зоне сварки относятся: частичное окисление атмосферы в сварочной зоне (сварка в С02, использование электродов с руднокислыми покрытиями), снижение парциального давления водорода н соз­дание условий для уменьшения растворимости водорода в жид­ком металле сварочной ванны (введение во флюсы и покрытия CaF2, фторидов и хлоридов) в целях связывания водорода в прочные соединения, не растворяющиеся в жидком металле

(HF, HC1). Рекомендуется также проводить тщательную под­готовку кромок под сварку, удаляя частично гидратированные оксидные пленки на металле, уменьшать содержание водяных паров в атмосфере дуги путем высушивания защитных газов (С02, Аг), прокаливать электродные покрытия и сварочные флюсы перед сваркой.

Углерод, содержание которого стараются сохранить при сварке конструкционных низколегированных сталей, представля­ет собой вредную примесь при сварке специальных сталей и жаропрочных сплавов, в которых содержание углерода должно быть малым [(0,03.. 0,06%) С]

В результате взаимодействия с углеродсодержащими вещест­вами в сварочных материалах (СаСОз и т. д.) содержание углерода при сварке может подняться выше допустимых преде­лов.

ТЕОРИЯ сварочных процессов

Граничные условия

Чтобы решить дифференциальное уравнение теплопроводно­сти, необходимо задать распределение температур в начальный момент времени (начальное условие) и условия взаимодействия тела с окружающей средой на его границах (граничные условия). Начальное условие определяется …

Основные допущения и упрощения, принятые в классической теории распространения теплоты при сварке

На современном уровне развития математики аналитическое решение уравнения теплопроводности в общем виде (5.21) еще не найдено, однако при введении некоторых допущений и упрощений можно получить пригодные для практического использования ча­стные …

Дифференциальное уравнение теплопроводности

Сложный процесс изменения температуры точек тела с коор­динатами jc, у, z во времени t описывается дифференциальным уравнением теплопроводности. Для вывода этого уравнения необ­ходимо рассмотреть баланс теплоты в некотором элементарном объеме …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.