Теория электропривода

Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета

Переходным процессом или переходным режимом электропривода называется режим его работы при переходе от одного установившегося состояния к другому, когда изменяется скорость, ток, момент. Причинами возникновения переходных режимов в электроприводах является либо изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т. е. пуск, изменение скорости, торможение, реверс и т. п. Переходные режимы могут возникнуть также в результате аварии или других случайных причин, например, при изменении величины напряжения или частоты сети, несимметрии напряжения по фазам, изменении порядка следования фаз, полном исчезновении напряжения, обрыве проводов и т. п. У некоторых механизмов, таких как кривошипно-шатунные прессы, ножницы, подъемно-качающиеся столы некоторых прокатных станов установившихся режимов вообще нет, а их рабочие режимы представляют собой периодические переходные процессы.

Переходные режимы играют огромную роль в работе электропривода и механизма и часто их характер предопределяет производительность механизма и качество выпускаемой продукции. Поэтому изучение этих режимов имеет большое практическое значение. Анализ этих режимов дает возможность детально выявить поведение электропривода, произвести правильный его выбор и расчет мощности электродвигателя, уменьшить расход энергии при пуске и торможении и т. д. Анализ переходных режимов позволяет также выявить предельно допустимое с т. з.нагрева число включений в час двигателя электропривода, работающего большую часть времени в переходных режимах.

Лишь ограниченное число механизмов допускает возможность проектирования их электропривода без учета характера протекания переходных процессов. К ним относятся некоторые редко пускаемые и длительно работающие механизмы с простейшими пусковыми устройствами, например, вентиляторы, насосы, а также механизмы, в которых производственный процесс настолько груб, что к их электроприводу вообще не предъявляется каких-либо особых требований, кроме обеспечения заданной мощности (бетономешалки, камнедробилки и т. п.).

Характер переходного режима электропривода зависит от свойств рабочей машины, типа электродвигателя, передачи, режима работы двигателя (пуск, торможение, сброс или наброс нагрузки и т. п.). Теоретическое рассмотрение переходных процессов с учетом всех влияющих факторов часто затруднителен, ибо не всегда можно аналитически выразить законы изменения отдельных параметров или же поведение электропривода в переходных режимах описывается системой уравнений высоких порядков. К счастью, далеко не во всех случаях требуется детальный учет всех факторов. Второстепенные факторы, которые при решении каждой конкретной задачи не могут оказать заметного влияния на поведение электропривода, могут не приниматься во внимание.

На протекание переходных процессов значительное влияние оказывает механическая, электромагнитная и тепловая инерция. Механическая инерция, характеризуемая электромеханической постоянной Тм, зависит как от инерционных масс и характера Мс, так и от электромеханических свойств двигателя. Электромагнитная инерция характеризуется электромагнитной постоянной Тэ, зависящей от L и R электрической цепи. Тепловая инерция характеризуется постоянной времени нагрева Тн, зависит от теплоемкости машины и ее теплоотдачи. Поскольку тепловые процессы протекают значительно медленнее электромагнитных и механических, их при анализе переходных процессов электропривода не принимают во внимание.

Следует иметь в виду, что если механическая инерция практически всегда ощутима и сказывается на переходных процессах, то электромагнитная инерция может быть и несущественной и практически не влиять на характер протекания процессов. В связи с этим, когда не требуется очень большой точности, ограничиваются только механической инерции. Переходные процессы в этом случае называются механическими. Если учитывается только электромагнитная инерция ( например в цепях возбуждения) , переходные процессы называются электромагнитными. Переходные процессы, в которых учитывается как механическая, так и электромагнитная инерция, называются электромеханическими.

Переход из одного установившегося режима к другому может совершаться по различным траекториям. При управлении электроприводом нужно стремиться выбирать такие, которые обеспечивают максимальное быстродействие, минимум потерь энергии и динамических нагрузок, максимум полезной работы и оптимальные значения других показателей.

Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета Наиболее часто требуется обеспечить изменение скорости электропривода за минимальное время при ограничении момента двигателя. Такие переходные процессы называются оптимальными по быстродействию при ограничении момента. Этому условию при Мс=const соответствует равномерно ускоренный характер изменения скорости при М=Мдоп=cconst (см. кривые 1 и 2 на рис.)

Если Мс=f(w), то скорость w при реверсе в процессе торможения и пуска должна изменяться с различными ускорениями в случае реактивного Мс , как показано на рисунке. Для некоторых производственных механизмов, например, пассажирских лифтов, переходные процессы электропривода должны протекать при строго ограниченном ускорении. Условием минимальной длительности переходного процесса является поддержание постоянства ускорения при различных нагрузках. Такие переходные процессы называются оптимальными по быстродействию при ограничении ускорения e.

В этом случае зависимость w=f(t) должна оставаться неизменной при разных Мс, а момент двигателя Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета при этих разных Мс будет изменяться.

Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета Однако в ряде случаев момент двигателя не реагирует на изменение нагрузки. В этом случае для ограничения e при любых Мс допустимый пусковой момент двигателя необходимо выбрать из условия Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета

Ускорение электропривода при возрастании нагрузки будет уменьшаться и при Мс=Мс макс

Примет значение Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета Время пуска по мере возрастания нагрузки, очевидно, будет увеличиваться.

Переходные процессы, в которых требуется обеспечить плавность их протекания путем ограничения производной момента Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета или т. н. рывка Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета наряду с ограничением момента или ускорения называются оптимальными при ограничении момента или ускорения и рывка.

Необходимость таких ограничений вызывается различными причинами. Так для двигателей постоянного тока по условиям коммутации необходимо ограничивать Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета , следовательно,

Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета .Для пассажирских лифтов ограничение рывка создает более комфортные условия. Нужно иметь в виду, что ограничение производной Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета при пуске электропривода влечет за собой снижение быстродействия, т. к. , например, время пуска возрастает при уменьшения Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета .

Переходные процессы в реальных электромеханических системах описываются нелинейными дифференциальными уравнениями и расчет этих процессов возможен с помощью ЭВМ. Но первичными и более наглядными все же остаются аналитические и графоаналитические методы анализа переходных процессов. К ним относятся :

1.Метод последовательных интервалов (численный метод интегрирования исходных уравнений).

2.Метод кусочно-линейной аппроксимации нелинейных характеристик.

3.Метод фазовой плоскости.

4.Метод гармонической линеаризации.

5.Метод линеаризации уравнений в окрестностях точки статического равновесия путем разложения в ряд Тейлора.

Первый и третий методы используются для анализа переходных процессов в существенно нелинейных системах. Метод фазовой плоскости применим для анализа процессов в системах не выше второго порядка, а первый метод – в системах до третьего порядка. Наиболее широко применяются второй и пятый методы. Так, второй метод позволяет аналитически исследовать процессы в электроприводах, дифференциальные уравнения которых не содержат произведений переменных, а нелинейные характеристики удовлетворительно линеаризуются двумя – тремя отрезками прямых. При наличии в уравнениях произведений переменных, линеаризация математического описания производится размножением в ряд Тейлора.

При использование кусочно-линейной аппроксимации и разложении в ряд Тейлора анализ переходных процессов ведется путем решения дифференциальных уравнений классическим либо операторным методом. В дальнейшем используем классический метод.

Теория электропривода

Частотно регулируемый электропривод

Производим и продаем частотные преобразователи: Цены на преобразователи частоты(21.01.16г.): Частотники одна фаза в три: Модель Мощность Цена CFM110 0.25кВт 2300грн CFM110 0.37кВт 2400грн CFM110 0.55кВт 2500грн CFM210 1,0 кВт 3200грн …

Переходные процессы при пуске и торможении электропривода с короткозамкнутым Асинхронным двигателем (АД)

В большинстве случаев к. з. АД питается от сети с U1=const и f1=const. Поэтому нелинейность их механических характеристик проявляется полностью как в режимах пуска, так и торможения. Магнитный поток в …

Переходный процесс электропривода с двигателем независимого возбуждения при из­менении магнитного потока

Обычно ДНВ работает при Ф=Фн если U=const или U=var. Необходимость ослабления по­тока возникает когда требуется получить скорость, превышающую основную (согласно тре­бованиям технологического процесса ). Если бы поток изменялся мгновенно, то …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.