энергосберегающие технологии

Автомобильный газогенератор — технология будущего

Анализ основных исследований и публикаций

Биомасса представляет собой древнейший источник энергии, однако её использование до недавнего времени сводилось к прямому сжиганию либо в открытых очагах, либо в печах и топках с весьма низким, в пределах 14 — 15%, КПД. Применяя более совершенные устройства, например, газогенераторы, имеющие наиболее высокое КПД (в пределах 75 — 90%) при относительно низкой их стоимости, можно не только сократить потребность в исходном топливе более чем в 5 раз, но соответственно снизить эмиссию СО2 в атмосферу. Особенно это актуально для лесо-недостаточных регионов России, где население активно заготавливает древесину для энергетических целей. Создание коммерчески доступных газогенераторов позволило бы значительно ослабить проблему произвольной вырубки деревьев в таких регионах.

Сегодня биомасса составляет 15% общего потребления первичных энергоносителей в мире. В развивающихся странах этот показатель составляет 48%, а в промышленно развитых государствах — в среднем 2 — 3%. Прогноз мирового энергетического совета относительно вклада биомассы в энергетику будущего, наряду с другими нетрадиционными возобновляемыми источниками энергии (НВИЭ), приведен в таблице 1. Термин «силовая биомасса» подразумевает использование современных промышленных технологий получения энергии из биомассы (исключая её бытовое использование для получения тепла и приготовления пищи). В соответствии с прогнозом доля биомассы составит 42 — 46% от общей доли НВИЭ в 2020 г.

При этом планируется, что 30% «силовой биомассы» будет использовано для производства тепла, 12,5% для совместного сжигания биомассы и угля и 32% для комбинированной выработки тепла и электроэнергии. Ещё 26% силовой биомассы с энергетических плантаций предполагается использовать для производства жидкого топлива.

Таблица 1

Прогноз мирового энергетического совета относительно вклада биомассы в энергетику будущего
Ресурсы НВИЭ 2020 г. минимальная оценка 2020 г. максимальная оценка
млн. т.у.т. % к итогу млн. т.у.т. % к итогу
«Силовая биомасса» 350 48 800 42
Солнечная энергия 150 19 510 26
Ветровая энергия 120 15 310 16
Геотермальная энергия 60 8 130 7
Микро ГЭС 70 9 100 5
Океаническая энергия 20 3 80 4
Итого 770 100 1960 100
% общих мировых энергитических нужд 3,4 8 — 12

Зарубежные технологии выращивания энергетических плантаций (ивы, тополя и пр.) едва ли в ближайшее время приживутся в России, т.к. для их реализации необходимы крупные инвестиции. Однако у нас значительный потенциал древесных отходов не используется. Но использование биомассы экономически рентабельно только в местах её сосредоточения. Так же важен тот факт, что промышленные технологии энергетического использования биомассы не могут применять рассредоточенную по территории страны биомассу, на долю которой приходится до 80% от её общего потенциала. Только местное население может использовать её для своих энергетических нужд в маломощных газогенераторах (30 — 200 кВт) транспортного типа.

В прошлом году технологии транспортных газогенераторов исполнилось 100 лет. В середине прошлого века технология силового использования биомассы достигла высокого уровня развития и применялась во всех сферах народного хозяйства. Транспортными газогенераторами оснащали: мотоциклы, легковые автомобили, трактора, грузовые автомобили, дрезины, автобусы, рыболовные суда, катера, баржи, железнодорожные составы и даже мотороллеры.

Сегодня использование транспортных газогенераторов экономически эффективно прежде всего в сельском хозяйстве, лесной и лесоперерабатывающей промышленности. Мировой парк транспортных средств, сосредоточенных в этих отраслях (трактора, комбайны, грейдеры и пр.) составляет 100 — 120 млн единиц. Особенно привлекательно использование газогенераторов в сельском хозяйстве, т.к. переход на горючее в виде сельскохозяйственных отходов сделал бы цены на сельскохозяйственную продукцию независимыми от цен на топливо нефтяного происхождения.

Несмотря на то, что применение газогенераторов на автомобильном транспорте имеет ряд несомненных преимуществ (экономических и экологических), в ближайшие 10 лет они едва ли получат широкое распространение. Причина этого, казалось бы, парадоксального вывода кроется в истории технического становления и развития технологии транспортных газогенераторов.

Современное состояние технологий термохимической конверсии биомассы для энергетических целей очень напоминает её развитие в середине 30-х годов прошлого века. В то время так же, как и сейчас, широкое внедрение этой технологии субсидировалось правительствами различных стран. Разница заключается лишь в том, что тогда основной причиной интереса правительственных структур к развитию и широкому распространению транспортных газогенераторов служило желание сохранить энергетическую независимость от поставок топлива нефтяного происхождения. Сейчас же забота правительств о возобновляемой энергетике обусловлена требованиями Киотского договора и прогрессирующим удорожанием нефтепродуктов. Глубокий всесторонний анализ конструктивного развития транспортных газогенераторов прошлого позволит сегодня не только избежать повторения многих ошибок, но и прогнозировать развитие этой технологии в современных условиях динамического роста энергетических нужд человечества.

После бурного развития технологий твердотопливных стационарных газогенераторов в XIX веке, нашедших своё применение в самых разных областях промышленности, в 1900 г. Тейлором во Франции был построен первый транспортный газогенератор. Однако в начале прошлого века удобство и относительная дешевизна бензина полностью затмили использование твердого топлива в транспорте. Необходимость применения альтернативного топлива стала очевидной только во время Первой Мировой войны из-за ограничений в поставках бензина. Первое промышленное производство транспортных газогенераторов было налажено во Франции, а их промышленная апробация происходила в Касабланке (Марокко), когда автоклуб Марокко провел ряд соревнований, в которых принимали участие первые 5 газогенераторных тракторов и 5 газогенераторных грузовых автомобилей. Подобные соревнования проходили и во Франции, не имея, однако, большого успеха. В 1919 г. Георгом Имбертом (Франция) был построен газогенератор обратного процесса газификации, который произвел настоящий переворот в автомобильном газогенераторостроении и до сих пор остается самым значимым достижением этой технологии.

В 1921 г. Имберт приехал на автомобиле, оборудованном газогенератором своей конструкции, в Париж, преодолев расстояние в 500 км, что было большим достижением в то время. Это привлекло внимание, особенно со стороны военных ведомств, которые и инвестировали в дальнейшем развитие этой технологии. Однако в период с 1920 по 1939 г. удобство и дешевизна топлива нефтяного происхождения сделали применение автомобильных газогенераторов непопулярными среди конечных потребителей из-за сложности их обслуживания. Но европейские правительства продолжали поощрять и субсидировать использование транспортных газогенераторов. К 1930 году во всех европейских странах, владеющих достаточными ресурсами биомассы, данная технология активно развивалась, конкурируя с бензином. Но нужно признать, развитие технологии обуславливалось лишь правительственными субсидиями и льготами. Кроме того, Великобритания, Франция и Италия инициировали широкое использование транспортных газогенераторов в своих колониях. К 1923 году 25 различных типов автомобильных газогенераторов были коммерчески доступны во Франции. К 1929 году приблизительно 1880 газогенераторных транспортных средств ездили по французским дорогам, из которых 2/3 принадлежали французской армии.

Активное развитие технология автомобильных газогенераторов получила в 1936 году. Правительства большинства европейских стран в условиях политической нестабильности, предвидя возможность войны и стараясь обеспечить энергетическую безопасность своих государств, начали активно субсидировать развитие этой технологии…

Pages: 1 2 3 4 5

энергосберегающие технологии

Преимущества электрического теплого пола.

Прежде, чем определить для себя преимущества или недостатки теплого пола. Необходимо разобраться какие виды систем обогрева существуют, условия, возможности монтажа в помещениях с определеннымиархитектурными решениями (дом, квартира, офис, промышленное помещение), а также дальнейшая эксплуатация. Здесь недостаточно лишь желания и материальных возможностей. Системы обогрева теплого пола делятся …

Виды теплогенерации в Украине на 2016 год и стоимость

В 2016 году частные потребители тепла в Украине получают тепло из следующих источников: 1. Наиболее распространенный - от электричества, электрокотлы, электрокамины, электрообогреватели... Источником без подробностей в большинстве случаев является "энергия …

Вакуумные трубки 1800 на 58мм — мощность, окупаемость

Более полугода изучаю вакуумные солнечные трубки длиной 1800 внешним диаметром 58мм внутренним 43-44мм. Внутренний объем трубки - 2,7 литра. Иногда на активном ярком солнце мощность трубки показывало около 130-150Вт, но …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.