Строительные материалы и изделия

ТЕРМОПЛАСТИЧНЫЕ ПОЛИМЕРЫ

Термопластичными называют полимеры, способные многократно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объясняются линейным строением их макромолекул. При нагревании взаимодейст­вие между молекулами ослабевает и они могут сдвигаться одна отно­сительно другой (как это происходит с частицами влажной глины), полимер размягчается, превращаясь при дальнейшем нагревании в вязкую жидкость. На этом свойстве базируются различные способы формования изделий из термопластов, а тагже соединение их сваркой. Однако на практике не все термопласты так просто можно перевеского разложения некоторых полимеров ниже температуры их теку­чести (поливинилхлорида, фторпластов и др.). В таком случае исполь­зуют различные технологические приемы, снижающие температуру текучести (например, вводя пластификаторы) или задерживающие термодеструкцию (введением стабилизаторов, переработкой в среде инертного газа).

Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в правиль­но подобранных растворителях. Тип растворителя зависит от химиче­ской природы полимера. Растворы полимеров, даже очень небольшой концентрации (2...5 %), отличаются довольно высокой вязкостью, при­чиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние.

На этом основано использование растворов термопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимер - растворах.

К недостаткам термопластов относятся низкие теплостойкость (обычно не выше 80...120° С), низкая поверхностная твердость, хруп­кость при пониженных температурах и текучесть при высоких, склон­ность к старению под действием солнечных лучей и кислорода воздуха.

Наибольшее применение в строительстве имеют следующие термо­пластичные полимеры: полиэтилен, полипропилен, полистирол, по­ливинилхлорид, перхлорвинил, поливинилацетат и поливиниловый спирт, полиизобутилен, полиакрилаты.

Кроме полимеров, получаемых из одного мономера, синтезируют сополимеры — продукты, получаемые совместной полимеризацией (со - полимеризацией) двух и более мономеров. В таком случае образуются материалы с новым комплексом свойств. Так, винил ацетат полимери - зуют совместно с винилхлоридом для получения сополимера более прочного и водостойкого, чем поливинилацетат, но сохраняющего его высокие адгезионные свойства. Широкий спектр сополимеров выпу­скают на базе акриловых мономеров,

Полиэтилен — продукт полимеризации этилена. Это один из наи­более распространенных полимеров — роговидный, жирный на ощупь, слегка просвечивающийся материал, легко режется ножом; при под­жигании горит и одновременно плавится с характерным запахом горящего парафина. Плотность полиэтилена 920...960 кг/м3. В зависи - . мости от молекулярной массы и способа полимеризации полиэтилен плавится при 90...130° С. При комнатной температуре полиэтилен практически не растворяется ни в одном из растворителей, но набухает в бензоле и хлорированных углеводородах; при температуре выше

70.. .80° С он растворяется в указанных растворителях.

Полиэтилен обладает высокой химической стойкостью, биологи­чески инертен. Прочность при растяжении у него довольно высокая - — 20...45 МПа; но при длительном действии нагрузки, составляющей более 50...60 % от предельной, у полиэтилена начинает проявляться /свойство текучести. Полиэтилен сохраняет эластичность до — 70° С. . Он легко перерабатывается в изделия и хорошо сваривается. Его ■недостатки — низкие теплостойкость и твердость, горючесть и быстрое ■старение под действием солнечного света. Защищают полиэтилен от ■старения, вводя в него наполнители (сажу, алюминиевую пудру) и В стабилизаторы.

I Из полиэтилена делают пленки (прозрачные и непрозрачные), трубы, электроизоляцию; вспененный полиэтилен в виде листов и труб і используется для целей тепло - и звукоизоляции и в качестве гермети - : зирующих прокладок (см. § 16.4).

Полипропилен — полимер, по составу близкий к полиэтилену. Прй синтезе полипропилена образуется несколько различных по строению полимеров: изотактический, атактический и синдиотактический.

В основном применяется изотактический полипропилен. Он отлиу чается от полиэтилена большей твердостью, прочностью и теплостой­костью (температура размягчения около 170° С), но переход в хрупкое состояние происходит уже при минус 10...20° С. Плотность полипро­пилена 920...930 кг/м3; прочность при растяжении 25...30 МПа. При­меняют полипропилен практически для тех же целей, что и полиэтилен, но изделия из него более жесткие и формоустойчивые.

Атактический полипропилен(АПП) получается при синтезе поли­

пропилена как неизбежная примесь, но легко отделяется от изотакти - ческого полипропилена экстракцией (растворением в углеводородных растворителях). АПП — мягкий эластичный продукт плотностью

840.. .845 кг/м3 с температурой размягчения 30...80° С. Применяют АПП как модификатор битумных композиций в кровельных материалах (см. § 18.2).

Полиизобутилен — каучукоподобный термопластичный полимер, подробно описанный в § 9.5.

Полистирол (поливинилбензол) — прозрачный жесткий полимер плотностью 1050... 1080 кг/м3; при комнатной температуре жесткий и хрупкий, а при нагревании до 800... 1000° С размягчающийся. Проч­ность при растяжении (при 20° С) 35...50 МПа. Полистирол хорошо растворяется в ароматических углеводородах (влияние бензольного кольца, входящего в состав молекул полистирола), сложных эфирных и хлорированных углеводородах. Полистирол горюч и хрупок. Для снижения хрупкости полистирол синтезируют с другими мономерами или совмещают с каучуками (ударопрочный полистирол).

В строительстве полистирол применяют для изготовления тепло­изоляционного материала — пенополистирола (плотностью 10...50 кг/м3), облицовочных плиток и мелкой фурнитуры. Раствор полистирола в органических растворителях — хороший клей.

Поливинилацетат — прозрачный бесцветный жесткий при комнат­ной температуре полимер плотностью 1190 кг/м3. Поливинилацетат растворим в кетонах (ацетоне), сложных эфирах, хлорированных и ароматических углеводородах, набухает в воде; в алифатических и герпеновых углеводородах не растворяется. Поливинилацетат не стоек к действию кислот и щелочей; при нагреве выше 130...150° С он разлагается с выделением уксусной кислоты. Положительное свойство поливинилацетата — высокая адгезия к каменным материалам, стеклу, древесине.

В строительстве поливинилацетат применяют в виде поливинила - цетатной дисперсии (ПВАД) — сметанообразной массы белого или светло - кремового цвета, хорошо смешивающейся с водой. Поливинил - ацетатную дисперсию получают полимеризацией жидкого винилаце -

тата, находящегося в виде мельчайших частиц (менее 5 мкм) в воде. Для стабилизации эмульсии винил ацетата используют поливиниловый спирт. При полимеризации капельки винилацетата превращаются в твердые частицы поливиналацетата, таким образом получается поли - винилацетатная дисперсия, стабилизатором которой служит тот же поливиниловый спирт. Содержание полимера в дисперсии около 50 %.

Поливинидацетатная дисперсия выпускается средней (С), низкой (Н) и высокой (В) вязкости в пластифицированном и непластифици - рованном виде. Пластификатором служит дибутилфталат, содержание которого указывается в марке индексом. В грубодисперсной ПВАД, обычно применяемой в строительстве, содержание пластификатора следующее (% от массы полимера): 5...10 (индекс 4), 10...15 (индекс 7) и 30...35 (индекс 20),

По внешнему виду пластифицированная и непластифицированная дисперсии почти не отличаются одна от другой. Поэтому, чтобы определить вид дисперсии, небольшое ее количество наносят' на чистое стекло и выдерживают при комнатной температуре до высыхания. У пластифицированной дисперсии образуется прозрачная эластичная пленка, у непластифицированной — пленка ломкая, снимается со стек­ла с трудом, крошится.

Необходимо помнить, что пластифицированная дисперсия немо­розостойка и при замораживании необратимо разрушается с осажде­нием полимера. Поэтому в зимнее время пластификатор поставляют в отдельной упаковке. Для пластификации пластификатор перемешива­ют ш дисперсией и выдерживают 3...4 ч для его проникновения в частицы полимера. Непластифицированная дисперсия выдерживает не. менее четырех циклов замораживания — оттаивания при температуре до — 40° С. Срок хранения ПВАД при температуре 5...20° С — 6 мес.

Поливинилацетат широко применяют в строительстве. На его основе делают клеи, водно-дисперсионные краски, моющиеся обои. ПВАД применяют для устройства наливных мастичных полов и для модификации цементных растворов (полимерцементные растворы и бетоны — см. § 12.8). Дисперсией, разбавленной до 5...10 %-ной кон­центрации, грунтуют бетонные поверхности перед приклеиванием облицовки на полимерных мастиках и перед нанесением полимерце - ментных растворов.

Недостаток материалов на основе дисперсий поливинилацетата — чувствительность к воде: материалы набухают, и на них могут появиться высолы. Это объясняется наличием в дисперсиях заметного количества водорастворимого стабилизатора и способностью самого полимера набухать в воде. Так как дисперсия имеет слабокислую реакцию (pH 4,5...6), при нанесении на металлические изделия возможна кор­розия металла.

Поливинилхлорид — самый распространенный в строительстве по­лимер — представляет собой твердый материл без запаха и вкуса,

бесцветный или желтоватый (при переработке в результате термодест­рукции может приобрести светло-коричневый цвет). Плотность поливинилхлорида 1400 кг/м3; предел прочности при растяжении

40.. .60 МПа. Температура текучести поливинилхлорида 180...200° С, но уже при нагревании выше 160° С он начинает разлагаться с выделением НС]. Это обстоятельство затрудняет переработку поливинилхлорида в изделия.

Поливинилхлорид хорошо совмещается с пластификаторами. Это облегчает переработку и позволяет получать пластмассы с самыми разнообразными свойствами: жесткие листы и трубы, эластичные погонажные изделия, мягкие пленки. Поливинилхлорид хорошо сва­ривается; склеивается он только некоторыми видами клеев, например перхлорвиниловым, Положительное качество поливинилхлорида — высокие химическая стойкость, диэлектрические показатели и низкая горючесть. .

В строительстве поливинилхлорид применяют для изготовления материалов для полов (различные виды линолеума, плитки), труб, погонажных изделий (поручни, плинтусы и т. п.) и отделочных деко­ративных пленок и пенопластов.

Перхлорвинил ■— продукт хлорирования поливинлхлорида, содер­жащий 60...70 % (по массе) хлора, вместо.56 % в поливинилхлориде. Плотность перхлорвинила около 1500 кг/м3. Он характеризуется очень высокой химической стойкостью (к кислотам, щелочам, окислителям); трудносгораем. В отличие от поливинилхлорида перхлорвинил легко растворяется в хлорированных углеводородах, ацетоне, этилацетате, толуоле, ксилоле и других растворителях. Положительное качество перхлорвинила — высокая адгезия к металлу, бетону, древесине, коже и поливинилхлориду. Сочетание высокой адгезии и хорошей раство­римости позволяет использовать перхлорвинил в клеях и окрасочных составах. Перхлорвиниловые краски благодаря высокой стойкости этого полимера используются для отделки фасадов зданий (см. § 18.2 и 18.5).

После работы с составами, содержащими перхлорвиниловый по­лимер, необходимо тщательно вымыть руки горячей водой с мылом и смазать их жирным кремом (вазелином, ланолином и т. п.). При сильном загрязнении рук их предварительно вытирают ветошыо, смо­ченной в уайт-спирите (применять для этой цели бензол, толуол, этилированный бензин запрещается).

Кушроноипдеповые полимеры — полимеры, получаемые полиме­ризацией смеси кумарона и индена, содержащихся в каменноугольной' смоле и продуктах пиролиза нефти. Кумароноинденовый полимер имеет небольшую молекулярную массу (менее 3000) и в зависимости от ее значения может быть каучукоподобным или твердым хрупким материалом. Снизить хрупкость кумароноинденовых полимеров можно совмещая их с каучуками, фенолформальдегидными смолами и други-

ми полимерами. Эти полимеры хорошо растворяются в бензоле, ски­пидаре, ацетоне, растительных и минеральных маслах. Кумароноинде - новые полимеры в расплавленном или растворенном виде хорошо смачивают другие материалы, а после затвердевания сохраняют адгезию к материалу, на который были нанесены. Из них изготовляют плитки для полов, лакокрасочные материалы и приклеивающие мастики.

Строительные материалы и изделия

ЛАКОКРАСОЧНЫЕ МАТЕРИАЛЫ

Лакокрасочные материалы (ЛКМ) используются для получе­ния защитных и декоративных покрытий на изделиях. ЛКМ после нанесения на поверхность отвердевают, образуя непроницаемую пленку, которая прочно сцепляется с основанием. Толщина плен­ки может составлять …

Геосинтетические материалы

Геосинтетические материалы — это материалы на основе по­лимерных волокон, проволоки, пленки, тканей, сеток, сотовых каркасов и т. д. Их применяют в гидротехническом строительстве; при строи­тельстве дорог и аэродромов; сооружении хвостохранилищ, …

Полимербетоны и бетонополимеры

Полимербетон отличается от других видов бетона тем, что свя­зующим веществом в нем являются термореактивные смолы (по­лиэфирные, фенольные, фурановые, карбамидные, реже — по­лиуретановые и эпоксидные). Термопластичные полимеры также могут быть использованы, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.