СОВРЕМЕННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Установившаяся ошибка

Система с обратной связью предоставляет инженеру возможность влиять на вид переход­ной характеристики. Кроме того, как мы уже видели, такая система позволяет значительно уменьшить ее чувствительность к изменению параметров и ослабить влияние возмущений. Однако имеет также смысл исследовать и сравнить установившуюся ошибку в разомкну­той и в замкнутой системах. Установившаяся ошибка — это ошибка, остающаяся после окончания переходного процесса, вызванного внешним воздействием.

+ ~ я»

-R(s) ----- *~С>------- *

G(s)

т

-Y(s)

Y(s)

G(s)

H(s)

Рис. 4.18. Разомкнутая система управления

Рис. 4.19. Замкнутая система управления В разомкнутой системе, изображенной на рис. 4.18, ошибка равна

ад=ад - ад=[і - стт. (4.48)

В замкнутой системе на рис. 4.19 при H(s) = 1 согласно (4.3)* ошибка равна

(4.49)

R(s).

Ec(s) =

1

1 + G(s)

Для вычисления установившейся ошибки используется теорема о конечном значении:

lim e(t)= lims£(s). (4.50)

_ 1 —КО А—>0

Приняв для сравнения входной сигнал в виде единичной ступенчатой функции, в разо­мкнутой системе мы получим:

(4.51)

е0 (о°) = limaf 1 - G(s)] ■ - = lim[l — G(s)] = 1 — G(0).

■v-»0 s -'->0

В замкнутой системе при H(s) = 1 имеем:

1

і

1

1 + G(s)

ec(co)=limi

s—>0

Случай неединичной обратной связи рассматривается в разд. 5.8.

4.5. Установившаяся ошибка

207

Значение G(s) при 5 = 0 часто называют коэффициентом усиления на нулевой частоте (по постоянному току), и это значение обычно больше единицы. Следовательно, в разомкну­той системе мы получим большую установившуюся ошибку, а в замкнутой системе она бу­дет незначительной.

Установившаяся ошибка

Анализ выражения (4.51) показывает, что в разомкнутой системе установившаяся ошибка может равняться нулю, если обеспечить выполнение условия 6'(0) = 1. Тогда воз­никает естественный вопрос: а в чем же заключается преимущество замкнутой системы? Чтобы ответить на этот вопрос, нам придется вернуться к понятию чувствительности. Действительно, в разомкнутой системе можно так подобрать ее параметры, чтобы выпол­нялось условие С(0) = 1. Однако в процессе эксплуатации системы ее параметры наверня­ка будут изменяться под влиянием внешних факторов, что приведет к отклонению коэф­фициента усиления G(0) от единицы. Значит, появится отличная от нуля установившаяся ошибка, устранить которую можно только перенастроив систему. Напротив, в замкнутой системе происходит непрерывное измерение ошибки и вырабатывается сигнал, приводя­щий к уменьшению ее установившегося значения. Таким образом, мы приходим к выво­ду, что побудительным мотивом к введению отрицательной обратной связи является сни­жение чувствительности системы к дрейфу ее параметров, неточности их настройки и внешним возмущающим факторам. Пример оригинальной системы с обратной связью приведен на рис. 4.20.

Рис. 4.20

Грип-11 — это искусственная рука в виде протеза, управляемая с помощью троса. Она может быть использована для переключения скоростей автомобиля, забивания гвоздей, нарезания помидоров и выполнения других несложных задач, требующих двух рук. Ее действие основано на тяговом усилии троса, а сила захвата изменяется в диапазоне от 0 до 110 фунтов. Рука воспроизводит движение большого и указательного пальцев и осуществляет захват, когда на трос воздействуют спинные мышцы человека. Обратная связь осуществляется человеком визуально, но он не испытывает нормального ощущения прикосновения, присущего большинству людей при осторожных действиях с предметом

Способность замкнутой системы уменьшать установившуюся ошибку, вызванную изменениями параметров и неточностью их настройки, мы проиллюстрируем следующим примером. Рассмотрим систему, в которой объект управления имеет передаточную функ­цию

G(s) = —. (4.53)

TS+ 1

Такая передаточная функция характерна для тепловых объектов, регуляторов напряжения или емкостей с жидкостью при регулировании уровня. При задании входной переменной в
виде единичной ступенчатой функции мы имеем R(s) = 1/5. Тогда в соответствии с (4.51) в разомкнутой системе установившаяся ошибка будет равна

е0(со) = 1 - 6X0) = 1 - К (4.54)

при согласованных единицах измерения R(s) и К. В замкнутой системе (рис. 4.19) мы име­ем:

Ec(s) = R(s)-ns)R(s), где T(s) = (7(,v)/[ 1 + GH{s). Установившаяся ошибка равна

ес(оэ)= lim 41 - 7X5)] - = 1 - 7X0).

.v->0 s

Если H(s) = 1/(Т[Л + 1), то Я(0) =1 и G(0) = К. Следовательно,

ес(со) = 1 J! Le_L. (4.55)

1+ К 1+ К

В разомкнутой системе можно было бы, к примеру, задать К= 1, тогда установившаяся ошибка будет равна нулю. В замкнутой системе можно задать большое значение К, напри­мер, К = 100. Тогда установившаяся ошибка в ней составит ес(со) = 1/101.

Если теперь в силу каких-то факторов начальное значение К изменится на 10%, т. е. АК/К = 0,1, то в разомкнутой системе появится абсолютное приращение установившейся ошибки Де0(со) = 0,1, а относительное приращение составит

Ае0(со) 0,1

(4.56)

IKOI 1

т. е. также 10%. При таком же приращении АК/К = 0,1 в замкнутой системе установившая­ся ошибка составит ес(со) =1/91 (при отрицательном приращении К). Следовательно, абсо­лютное изменение установившейся ошибки будет равно

Аес (оо ) = ——(4.57) 91 101

а относительное приращение составит

Аес (оо)

= 0,0011, (4.58)

IKOI

или 0,11%. Как говорится, результат в комментариях не нуждается.

СОВРЕМЕННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Требования к качеству системы в частотной области

Мы постоянно должны задавать себе вопрос: какая связь существует между частотными характеристиками системы и ожидаемым видом её переходной характеристики? Другими словами, если задан набор требований к поведению системы во временной …

Измерение частотных характеристик

Синусоидальный сигнал можно использовать для измерения частотных характеристик ра­зомкнутой системы управления. На практике это связано с получением графиков зависи­мости амплитуды и фазового сдвига выходного сигнала от частоты. Затем по этим …

Пример построения диаграммы Боде

Диаграмма Боде для передаточной функции G(s), содержащий несколько нулей и полюсов, строится путём суммирования частотных характеристик, соответствующих каждому отде­льно взятому полюсу и нулю. Простоту и удобство данного метода мы проиллюстрируем …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.