РЕДКИЕ МЕТАЛЛЫ

СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

М

Еталлы, как и все окружающие нас тела, состоят из отдельных невидимых даже в самый сильный микро­скоп частиц, называемых атомами. Но атомы в свою очередь построены из ещё более мелких частиц: протонов, электронов и нейтронов. Протоны и электроны имеют электрические заряды: протон — положительный заряд, а электрон — отрицательный, нейтрон же не имеет никакого электрического заряда.

Если два протона «находятся близко, они отталкива­ются друг от друга, так как они заряжены одноимённым электричеством. Так же ведут себя и два электрона. На­против, протон и электрон притягиваются друг к другу, причём силы взаимного притяжения протона и электрона равны между собой, т. е. протон обладает элементарным электрическим зарядом, равным заряду электрона.

Атом в нормальном состоянии, т. е. когда он содержит одинаковое количество протонов и электронов, не обла­дает электрическим зарядом. Но бывают такие состояния атома, когда он приобретает или теряет электроны. Тогда атом становится электрически заряженным. При избытке электронов атом заряжен отрицательным электричеством, а при нехватке электронов он заряжен положительным электричеством. Вот такие атомы, в которых имеется из­быток или недостаток электронов, называются ионами.

Как же располагаются элементарные частицы в атоме?

В настоящее время считают, что атом построен следую­щим образом. Протоны и нейтроны составляют ядро, на­ходящееся в центре атома. Вокруг ядра обращаются электроны, которые образуют электронную обо­лочку атома. В каждом атоме количество электронов равно количеству протонов.

Электроны в электронной оболочке расположены слоями. В каждом слое может поместиться лишь опреде* лённое количество электронов. Первый слой, окружающий непосредственно ядро, может вместить лишь два элект­рона, второй слой — 8, третий — от 8 до 18 электронов. Каждый новый слой электронов при переходе от одного атома к другому образуется обычно после заполнения близлежащего к ядру внутреннего слоя.

Например, ядро атома натрия, как установлено, имеет 11 протонов, а его 11 электронов распределены в трёх оболочках: в первой — 2, во второй — 8 и в третьей —

1 электрон. Ядро атома рубидия содержит 37 протонов и окружено 37 электронами, котс^рые расположены в пяти оболочках: в первой — 2, во второй — 8, в третьей—18, в четвёртой — 8, в пятой — 1 электрон. Ещё более слож­ное строение имеет атом урана. Его ядро содержит 92 про­тона, а в электронной оболочке имеется 92 электрона.

Протон и нейтрон почти одинаковы по весу, а электрон почти в 1840 раз легче протона. Значит, основная масса атома содержится в его ядре. Чем большее количество нейтронов и протонов содержится в ядре, тем больший вес имеет атом.

Вес атома, например, в граммах выражать очень не­удобно: потребовалось бы писать десятки нулей после за­пятой. Поэтому ввели понятие об относительном весе ато­мов, об атомном весе. Вначале за единицу был при­нят атомный вес водорода; с ним сравнивали атомные веса всех других элементов.

Стройную систему химических элементов создал вели­кий русский химик Д. И. Менделеев в 1869 году, на основе открытого им периодического закона.

Сущность закона Менделеева состоит в том, что все химические элементы, расположенные один за другим в порядке возрастания атомных весов, образуют ряд, в ко­тором химические свойства элементов через определённое количество элементов периодически повторяются.

Д. И. Менделеев расположил химические элементы в своей таблице так, что элементы, помещённые в одних и тех же вертикальных столбцах, обладают сходными хими­ческими свойствами. Зная место элемента в таблице, мож­но определить большинство химических свойств элемента и его соединений. Каждый химический элемент в таблице Менделеева имеет порядковый номер. Его теперь называют числом Менделеева. Этот номер указывает число протонов в ядре. В одни и те же вертикаль­ные столбцы таблицы попадают атомы с одинаковым числом электронов во внешней оболочке.

В зависимости от числа электронов во внешней оболоч­ке меняются химические и физические свойства элемента.

Атомы одного и того же элемента, отличающиеся друг от друга лишь числом нейтронов в ядре, называются изо­топами. «Изотоп» — греческое слово. Оно обозначает «занимающий одно и то же место». Изотопы каждого эле­мента располагаются в одной и той же клетке таблицы Менделеева, поскольку заряд ядра (количество прогонов) у изотопов одного и того же элемента одинаков. Металлы в отличие от жидких и газообразных тел в обычных усло­виях являются кристаллическими телами. Кристалл — это правильная фигура, ограниченная пло­скими поверхностями.

Внутреннее строение кристаллов в настоящее время изучено довольно хорошо с помощью рентгеновских лу­чей. Освещая ими кристаллы, получают рентгенограмму, т. е. картину на фотопластинке, по которой определяют расположение атомов в кристаллической решётке и рас­стояния между ними. Рентгенограммы показали, что ионы металлов «укладываются» в кристалле примерно так же, как располагаются в ящике твёрдые шары.

Атомы разных металлов образуют неодинаковые кри­сталлические решётки. Чаще всего встречаются три типа решёток.

Первый тип — кубическая объёмноцентрированная ре­шётка (рис. 1). Атомы металла в такой решётке нахо­дятся в вершинах и центре куба. Каждый атом окружён

СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

Рис. 1. Кубическая объёмноцентрированная кристаллическая решётка

Металла.

Восемью атомами. Такую решётку имеют металлы вана­дий, вольфрам, молибден, литий, хром и другие.

Второй тип решётки — кубическая гранецентрирован - иая (рис. 2). Атомы металла в ней расположены по вер­шинам граней куба. Такой решёткой обладают, напри­мер, алюминий, свинец, золото, серебро, никель, торий.

Третий тип — гексагональная (шестиугольная) плотно упакованная решётка (рис. 3). Она встречается у цинка, магния, кадмия, бериллия.

На рис. 1—3 атомы условно изображены в виде ша­риков. В зависимости от типа решётки атомы занимают в ней больше или меньше места. Например, в кубической объёмноцентрированной решётке атомы занимают 68% пространства, а в кубической гранецентрированной—74%.

Расположение атомов в кристаллической решётке ока­зывает большое влияние на свойства металла.

У некоторых металлов кристаллическая решётка может перестраиваться из одного типа в другой. Например, чис­тое железо при температурах ниже 910° имеет кубическую
объёмноцентрированную решётку, а выше 910° решётка становится гранецентрированной. Свойством изменять кри­сталлическую решётку обладают и такие металлы, как олово, уран, титан, таллий, цирконий, лантан, церий.

СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

Рис. 2. Кубическая гранецентрированная решётка металла.

СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВСвойство веществ образовывать решётки разной фор­мы называют аллотропией; в переводе с греческого

СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

Рис. 3. Гексагональная (шестиугольная) плотно упакованная решётка.

Языка это слово означает «другой поворот», «другое свой­ство». Общеизвестна аллотропия у кристаллического углерода. Он может находиться в виде графита и в виде алмаза. Графит и алмаз построены из атомов углерода; отличие их только в строении кристаллической решётки. А какая огромная разница в свойствах! Графит — мягкий,

Непрозрачный минерал чёрного цвега, алмаз, напротив, прозрачен, бесцветен и твёрд.

Атомы в кристаллической решётке металлов располо­жены столь близко друг к другу, что их внешние элект­роны имеют возможность двигаться не только вокруг одного атома, а вокруг многих атомов. Следовательно, внешние электроны, распределяющиеся в металле равно­мерно, свободно перемещаются по всему куску металла, образуя своеобразный электронный газ.

Таким образом, любой металл представляет собой решётку из правильно располо­женных положительных ионов, заполнен­ную электронным газом. Высокая прочность ме­таллов и объясняется наличием электронного газа, кото­рый обволакивает все ионы, превращая металлический кристалл как бы в одно целое.

Ионы, находящиеся в определённых местах (узлах) кри­сталлической решётки, могут совершать, однако, движе­ние — колебание. В ненагретом металле колебания ионов замедлены, в нагретом — ионы испытывают сильное коле­бание. Чем выше температура, тем сильнее раскачи­ваются ионы. Наконец, наступает момент, когда силы взаимодействия уже не могут удержать ионы в узлах кристаллической решетки и она разрушается; металл из твёрдого состояния переходит в жидкое. Это и есть тем­пература плавления.

Если два расплавленных металла тщательно переме­шать, то после затвердевания получится сплав этих ме­таллов. Сплавы получаются и при сплавлении металла с неметаллом, например железа с углеродом, алюминия с кремнием и т. д. Свойства полученного сплава зависят не только от того, какие элементы входят в сплав, но и от внутреннего строения, или, как говорят, структуры сплава. Сплав является тоже кристаллическим телом.

Строение сплавов может быть различно. Составные части сплава могут образовать либо механическую смесь, либо твёрдый раствор, либо химиче­ское соединение. Но есть сплавы, в которых име­ются одновременно и механические смеси, и твёрдые рас­творы, и химические соединения.

Механическая смесь получается в том случае, когда составные части не взаимодействуют химически, а нахо­дятся в сплаве в виде самостоятельных мелких кристал­

Ликов. Их можно наблюдать при рассматривании отпо­лированной поверхности в микроскоп. Механические смеси образуются, например, при сплавлении свинца с сурьмой, висмута с кадмием и др.

Каждый знает раствор сахара или поваренной соли в иоде. Растворяя сахар или поваренную соль в воде, можно получить однородное вещество — жидкий раствор. В ста­кане воды можно растворить различное количество сахара

-(Ь----------

подпись: -(ь

-"О-“О—О О"

подпись: -"о-“о—о о" СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВИли поваренной соли. Поэтому такие растворы являются одно­родными веществами перемен­ного состава.

Чр—ф—^—ф -

0) Атом тда

Т Атом ткеля

Рис. 4. Кристаллическая решётка твёрдого раствора замещения.

подпись: чр—ф—^—ф-
0) атом тда
т атом ткеля
рис. 4. кристаллическая решётка твёрдого раствора замещения.
Оказывается, что подобные однородные системы переменного состава образуются и в твёрдых телах. Их называют твёрдыми растворами. В них атомы растворённого вещества и раство­рителя «рассеяны», перемешаны между собой. В кристаллической решётке вещества, являющегося растворителем, некоторые его атомы замещаются атомами растворённого вещества (рис. 4). Такие растворы называются твёр­дыми растворами замеще­ния. Их образуют при сплавле­нии, например, металлы медь и никель, железо и хром, зо­лото и медь, серебро и золото, медь и платина и др.

Замещение одних атомов другими в кристаллической решётке происходит в том случае, если атомы растворяе­мого металла близки по своим размерам атомам раство* рителя. Если разница в размерах атомов превышает 15%, твёрдый раствор замещения образоваться не может.

При очень большой разнице в размерах атомов обра­зуются твёрдые растворы внедрения. Они чаще всего получаются тогда, когда металл растворяет в себе неметаллические элементы, атомы которых значительно меньше атомов металла. Самым распространённым спла­вом, построенным по типу твёрдых растворов внедрения, является сплав железа с углеродом; этот сплав назы­вается сталью. При образовании твёрдого раствора внедрения атомы внедряющегося элемента располагаются
в промежутках кристаллической решётки между атомами растворителя. Кристаллическая решётка твёрдого рас­твора внедрения показана на рис. 5.

А много ли можно растворить одного металла в дру­гом? Неограниченная растворимость присуща далеко не всем металлам. В меди, например, может раствориться сколько угодно никеля, точно так же и в никеле можно растворить любое количество меди. Растворителем счи­тают тот металл, которого больше в сплаве по весу.

О йтом дзота

Рис. 5. Кристаллическая решётка твёрдого раствора внедрения.

подпись: 
о йтом дзота
рис. 5. кристаллическая решётка твёрдого раствора внедрения.
Многие металлы обладают ограниченной раст­воримостью. Например, в алюминии можно раство­рить не более 5,5% меди по весу. При большем количе­стве медь находится в спла­ве в виде отдельных нераст - ворённых частиц. Чем выше температура твёрдого раст­вора, тем больше меди мож­но растворить в алюминии (но не более 5,5%).При ох­лаждении этого сплава медь выделяется в виде мельчай­ших, очень твёрдых и хруп­ких частиц.

Какова природа этих ча­стиц? Оказывается — это не чистая медь, а её х и м и ч е - ское соединение с алюминием. Избыток меди в сплаве взаимодействует с алюминием химически. Кристаллики любого химического соединения в сплаве имеют вполне определённый состав. Так, например, при образовании химических соединений: железа с углеродом, называемого карбидом железа, три атома железа химически связаны с одним атомом углерода; алюминия с медью—два атома алюминия сое­динены с одним атомом меди. Для образования карбидов вольфрама или ванадия нужно, чтобы соотношение ато­мов этих металлов и атомов углерода было равно 1 : 1, а в карбиде хрома 23 атома хрома взаимодействуют с ше­стью атомами углерода.

Кристаллические решётки химических соединений очень сложны. При сильном разогревании сплава кри­сталлы химических соединений могут растворяться в твёр-

Дом растворе сплава, а при снижении температуры нагре­вания образовываться вновь.

Сплавы, применяемые в технике, имеют сложный хи­мический состав. Высокопрочные стали, например, имеют в своем составе до десятка различных химических эле­ментов. Чем сложнее состав и строение сплава, тем раз­нообразнее его свойства.

Редкие металлы, вводимые в состав сталей и сплавов, улучшают их качество, коренным образом изменяют пер­воначальные свойства сплавов, так как они часто обра­зуют кристаллы химических соединений, упрочняющих твёрдый раствор.

Металлурги пользуются редкими металлами для того, чтобы выплавленные стали и сплавы были более прочны, более твёрды, обладали нужной пластичностью, упруго­стью, жароупорностью, химической' стойкостью и т. д. О том, какие это свойства и как они изменяются при до­бавке редких металлов, будет рассказано ниже.

РЕДКИЕ МЕТАЛЛЫ

РАДИОАКТИВНЫЕ РЕДКИЕ МЕТАЛЛЫ

С Реди редких металлов имеются такие, которые обла­дают особым физическим свойством — радиоактивно­стью. К ним относится радий, торий, уран. Изучение их на­чалось с конца XIX века. В 1898 году молодой …

РЕДКИЕ МЕТАЛЛЫ В БИОЛОГИИ И МЕДИЦИНЕ

М Ного лет назад, исследуя золу, получающуюся при сжигании каменного угля, химики обнаружили в её составе 46 химических элементов. В их числе было немало редких и рассеянных элементов. Исследование морских …

РЕДКИЕ МЕТАЛЛЫ В ХИМИИ

В прежние времена, когда наука и техника были на низ­ком уровне развития, природа для человека была единственным источником, откуда он брал в готовом виде всё, что ему нужно было для …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.