Modeling Solar Radiation at the Earth’s Surface

Hourly Distributions of Global Radiation

The number of studies about the hourly irradiance is less than for longer time scales. Some authors, as Engels et al. (1981) or Olseth and Skartveit (1987, 1993) empha­sise that the hourly distributions are similar to the daily ones and they even use the same fitting procedures. Ettoumi et al. (2002) used Beta distributions to model the behaviour of the global solar irradiation in Algeria. Only few authors are pointing out an increase in the bimodality with regard to the daily distributions.

6.2 Instantaneous Distributions of Global Radiation

The distributions that can be considered as instantaneous (less than 10-minutes) show a different shape, since the transient effects caused by clouds are now evident and contribute to the increase of the bimodality. The first authors who proved the
strong bimodality of these clearness index distributions (with 1-minute basis data) were Suehrcke and McCormick (1988a). They analysed a year of irradiance data collected in Perth (Australia) for different values of optical air mass and proposed a fitting function. Tovar et al. (1998a) confirmed the hypothesis of Suehrcke and McCormick using 1-minute data collected during almost three years in Armilla, near Granada, (Southern Spain). They observed the strong bimodality of the dis­tribution conditioned by the optical air mass, increasing as the air mass increases. These authors proposed a model based on the Boltzmann statistic. Later, they stud­ied the variability of the probability density based on the daily irradiation (Tovar et al. 2001). These last distributions presented unimodal features, unlike the dis­tributions conditioned by the optical air mass. Nevertheless, the same type of fit­ting function can be used (Tovar et al. 2001). The model of Tovar et al. (1998a) has been used by other authors, like Varo et al. (2006), who evaluated the model with data collected in Cordoba (Southern Spain). They achieved reasonable perfor­mance using different fitting parameters according to the local climatic conditions. Vijayakumar et al. (2006) analysed the instantaneous distributions, with the aim of exploring the differences between hourly and instantaneous distributions. They con­cluded that the variations in solar radiation within an hour cannot be considered neg­ligible when conducting performance analyses of solar energy systems. Depending on the critical level, location and month, an analysis using hourly data rather than short-term data can underestimate the performance between 5% and 50%. Tomson and Tamm (2006) analysed the distribution functions of the increments of solar ra­diation mean values over a period of time, classifying the solar “climate” in stable and highly variable. They found that the distributions functions can be explained by the superposition of two exponential functions with different exponents. The study of Woyte et al. (2007) introduced the wavelet techniques to analyse the cumulative frequency distributions of the instantaneous clearness index for four datasets from three different locations. The analysis resulted in the known bimodal pattern of the distributions. The wavelet technique allows the identification of fluctuations of the instantaneous clearness index and their specific behaviour in the time dimension.

Modeling Solar Radiation at the Earth’s Surface

Quality Assessment Based Upon Comparison with Models

Many models based on the physics of radiation transfer through the clear atmo­sphere have been developed (Lacis and Hansen 1974; Atwater and Ball 1978; Hoyt 1978; Bird and Hulstrom 1981a, …

Solar Horizontal Diffuse and Beam Irradiation on Clear Days

There exist a number of models to determine the solar horizontal diffuse irradia­tion on a clear day (Kondratyev 1969) but they are complex and have very stringent conditions. Similarly, there …


Reading the twenty chapters of this book caused me mixed reactions, though all were positive. My responses were shaped by several factors. Although I have main­tained a “watching brief’ on …

Как с нами связаться:

тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.