Индивидуальные солнечные установки

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

На отопление, горячее водоснабжение и кондициони­рование воздуха в жилых, общественных и промышлен­ных зданиях расходуется 30—35 % общего годового энер­гопотребления.

Наиболее крупная солнечная система теплоснабжения в СССР построена в пансионате в г. Кастрополе (Крым), там суммарная площадь 1850 солнечных коллекторов" равна 1600 м2. В целом по стране введено в действие более 50 демонстрационных и опытных солнечных уста­новок теплохолодоснабжения с суммарной площадью поверхности коллекторов более 10 000 м2. Стоимость плоских Солнечных коллекторов 50—75 руб. в расчете на 1 м2 площади лучевоспринимающей поверхности, а стои­мость всей системы теплоснабжения в 3—.5 раз выше.

Максимальная суточная производительность плоско­го солнечного коллектора Братского завода равна 70— 100 л горячей воды на 1 м2 площади КСЭ в летний сол­нечный день, а годовая экономия топлива от применения солнечных систем теплоснабжения составляет 100 — 170 кг условного топлива на 1 м2 площади КСЭ в зави­симости от района страны, в котором установлены кол­лекторы.

Масштабы использования солнечной энергии зависят прежде всего от метеорологических условий — количест­ва солнечных дней в году, годового количества поступа­ющей солнечной радиации и его распределения по сезо­нам, температуры наружного воздуха и т. п. В районах, имеющих более 1800 ч солнечного сияния в год, целесо­образно использовать солнечную энергию для теплохо - лодоснабжения зданий. Солнечные водонагревательные установки получили довольно широкое распространение благодаря простоте их конструкции, надежности, быст­рой окупаемости.

Сейчас во всем мире в эксплуатации находится бо­лее 5 млн. солнечных водонагревательных установок, используемых в индивидуальных жилых домах, централи­зованных системах горячего водоснабжения жилых и об­щественных зданий, включая гостиницы, больницы, спор­тивно-оздоровительные учреждения и т. п. Налажено промышленное производство солнечных водонагревате­лей в таких странах, как Япония, Израиль, Кипр, США, Австралия, Индия, Франция, ЮАР и др.

По принципу работы солнечные водонагревательные установки можно разделить на два типа; установки с ес­тественной и принудительной циркуляцией теплоносите­ля. В последние годы все больше производится пассив­ных водонагревателей, которые работают без насоса, а следовательно, не потребляет электроэнергию. Они проще в конструктивном отношении, надежнее в эксплу­атации, почти не требуют ухода, а по своей эффективно­сти практически не уступают солнечным водонагрева­тельным установкам с принудительной циркуляцией. Бо­лее половины пассивных водонагревателей составляют установки термосифонного типа с естественной циркуля­цией, а остальные—'это компактные водонагреватели, в которых бак-аккумулятор горячей воды и коллектор солнечной энергии объединены (интегрированы) в еди­ное компактное устройство.

Водонагреватели с естественной циркуляцией воды. Принцип работы солнечной водонагревательной установ­ки термосифонного типа с естественной циркуляцией теп­лоносителя иллюстрируется схемой, показанной на рис. 24, а. Установка содержит коллектор солнечной энергии, бак-аккумулятор горячей воды, подъемную тру­бу и опускную трубу. В нижнюю часть бака-аккумулято­ра подводится холодная вода (ХВ), и из его верхней ча­сти отводится к потребителям горячая вода (ГВ). Пере-

Ряс. 24. Схема (а) и конструкция (б) солнечного водонагревателя с естественной циркуляцией:

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИА: I — солнечный коллектор; 2 — бак - аккумулятор горячей воды; б: / — термостат; 2— горячая вода; 3 — бак горячей воды; 4 — расширитель* ный бак; 5 — горячий теплоноситель? 6 — теплообл»енник; 7 — подвод" холод­ной воды; 8 — обратная труба; 9 — коллектор; 10 — электронагреватель

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Численные элементы образуют контур естественной цир­куляции воды. По подъемной трубе горячая вода из кол­лектора солнечной энергии поступает в бак-аккумулятор, а по опускной трубе из бака в коллектор поступает бо­лее холодная вода для нагрева за счет поглощенной сол­нечной энергии. Поскольку средняя температура воды в подъемной трубе выше, чем в опускной, плотность во - 1 ды, напротив, ниже во второй трубе. И вследствие этого возникает разность давлений (Па), вызывающая движе­ние воды в контуре циркуляции:

Др = |гЯ(р1 — р2),

Где £ —ускорение свободного падения, равное для рав­нинных районов 9,81 м/с2; Я— разность отметок низа солнечного коллектора (нулевой уровень) и места под­вода горячей воды в бак-аккумулятор, м; р! — плотнОсть воды в опускной трубе при температуре Ти кг/м3; р2 — плотность воды в подъемной трубе при температуре Г2, кг/м*.

Очевидно, что чем больше разность температур воды, тем больше разность давлений и интенсивнее движение вОды. Аналогичное влияние оказывает увеличение раз­ности отметок Я.

Непременным условием эффективной работы солнеч­ной водонагревательной установки термосифонного типа является тепловая изоляция всех нагретых поверхно­стей— прежде всего бака-аккумулятора, подъемной и опускной труб, патрубка для отвода горячей воды к во­доразборным кранам или душу и воздушника. Толщина тепловой изоляции бака должна быть 50—75 мм при ис­пользовании минеральной ваты или другого материала с коэффициентом теплопроводности 0,04—0,045 Вт/(м • К), а для трубопроводов — от 25 мм для опускной трубы до 50 мм для подъемного и соединительных трубопроводов. Точка присоединения подъёмной трубы к баку-аккуму­лятору должна находиться в йерхней части бака на рас­стоянии не менее % высоты бака От его днища, а патру­бок для подпитки холодной воды следует присоединять к нижней части бака. При необходимости использова­ния электронагревателя для догрева воды внутри бака- аккумулятора его необходимо располагать горизонталь­но и размещать в верхней части бака. При соблюдении указанных условий обеспечивается температурное рас­слоение (стратификация) жидкости по высоте бака, при этом температура воды в нижней части бака ниже, чем в верхней. Благодаря этому в коллектор поступает вода с невысокой температурой, КПД коллектора возрастает и солнечная энергия используется более эффективно.

Более высокое положение бака-аккумулятора относи­тельно коллектора солнечной энергии в водонагреватель­ных установках термосифонного типа имеет важное зна­чение не только для обеспечения циркуляции теплоноси­теля в дневное время (на схеме направление движения— по часовой стрелке), но также и для предотвращения циркуляции воды в обратном направлении—против ча­совой стрелки — в ночное время. Это возможно при низ­

Ком положении бака, когда горячая вода из верхней части бака ночью поступает в коллектор, там она охлаж­дается за счет излучения энергии в окружающее прост­ранство и конвекции и возвращается в нижнюю часть бака. Естественно, это нежелательный процесс, так как он вызывает потери энергии, и для его предотвращения бак-аккумулятор должен быть установлен так, чтобы его днище было выше верхней отметки наклонного кол­лектора солнечной энергии на 300—600 мм.

Солнечные водонагревательные установки с естест­венной циркуляцией теплоносителя являются саморегу­лирующимися системами, и расход жидкости в них пол­ностью определяется интенсивностью поступающего сол­нечного излучения, а также теплотехническими и гид­равлическими характеристиками солнечного коллектора, бака-аккумулятора и соединительных трубопроводов.

В условиях холодного климата в солнечном коллек­торе следует использовать незамерзающий теплоноси­тель — смесь воды с этилен - или пропиленгликолем, ГЛИ - зантин (смесь воды с глицерином) и др. В этом случае схема становится двухконтурной. Пример конструктив­ного выполнения водонагревателя с антифризом в кон­туре коллектора показан на рис. 24, б. Теплота, получен­ная незамерзающим теплоносителем в коллекторе, пере­дается воде посредством теплообменника, размещенного в нижней части бака-аккумулятора. По санитарно-гиги­еническим нормам вода должна быть надежно защище­на от попадания теплоносителя, содержащего токсичес­кие вещества.

Возвращаясь к рассмотрению компактных интегри­рованных водонагревателей, обратим внимание на исход­ную конструкцию, схематически показанную на. рис. 25, а. В теплоизолированном корпусе с остекленной верхней крышкой 2 размещена, емкость 3 с черной или селектив* ной наружной поверхностью. Для подвода холодной и от­вода горячей воды предусмотрены патрубки. Эффектив­ность водонагревателя можно повысить с помощью от*- ражателя, имеющего специальную форму и помещенного внутри корпуса (рис. 25, б). КПД компактных водона­гревателей достигает 60 %. На рис. 26 и 27 показана конструкция компактного водонагревателя с солнечным коллектором, выполненным из тепловых труб с надеты­ми на них с помощью пружинящих прижимов плоскими ребрами, имеющими селективное покрытие в виде фоль­ги, приклееваемой к ребрам. Теплота от абсорбера кол­лектора передается баку-аккумулятору контактным способом с помощью листа, приваренного к ребрам и со­прикасающегося со всей поверхностью днища бака. Пло­щадь солнечного коллектора составляет всего 1,4—1,6 м2, объем аккумулятора равен 60—100 л, КПД водонагре­вателя равен 60 %. Благодаря применению тепловых труб эффективность теплообмена достаточна высока, и вода,

3

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис. 25. Компактный солнечный водонагреватель емкостного типа:

А —с одной или несколькими емкостями с водой; б — с отражателем солнеч­ной энергии; 1 — корпус; 2 — остекление; 3 — емкость; 4 — подвод холодной воды; 5 — отвод горячей воды; 6 —отражатель

Поступающая в бак, нагревается за счет теплоты, под­водимой от коллектора с помощью контактного листа. В этом случае полностью исключается возможность за­грязнения воды рабочей жидкостью, находящейся в теп­ловых трубах.

Водонагревательные установки с принудительной циркуляцией. Установки с принудительной циркуляцией теплоносителя целесообразно использовать для горячего водоснабжения крупных объектов. В них солнечный кол­лектор представляет собой большой массив модулей КСЭ. Эти установки имеют большую теплопроизводи - тельность, но, как правило, они довольно сложны. Прин-
/ — автоматический Ьоздушный клапан; 2 — подвод воды через поплавковый клапан; 3 — вода в коллектор; 4 — нагретая вода из коллектора; 5 —горячая вода к потребителям

Рис. 26. Комнактный солнечный водонагреватель:

подпись: 
рис. 26. комнактный солнечный водонагреватель:

/ — корпус; 2— остекление; 3 — теплоизоляция; 4— тепловая труба; і —реб­ро; 6 — бак; 7 — контактный лист

Рис. 27. Типичная конфигурация бака-аккумулятора компактного водонагревателя:

подпись: / — корпус; 2— остекление; 3 — теплоизоляция; 4— тепловая труба; і —ребро; 6 — бак; 7 — контактный лист
 
рис. 27. типичная конфигурация бака-аккумулятора компактного водонагревателя:
Ципиальная схема установки с циркуляцией воды в кон - туре КСЭ с помощью насоса подачей холодной воды в бак-аккумулятор и регулированием температуры горя­чей воды, поступающей к потребителю, путем подмеши­вания холодной воды в смесительном клапане показана на рис. 28.

В холодном климате, как правило, применяются двух­контурные схемы водонагревательных установок (рис. 29). В первом контуре, состоящем из солнечного коллек­тора и теплообменника с циркуляционным насосом и рас­

Ширительным баком, используется незамерзающий теп­лоноситель. Второй контур образуют бак-аккумулятор, терлобменник и электрический или газовый котел. Хо­лодная вода подводится в нижнюю часть бака-аккумуля­тора, а вода, нагретая в теплобменнике, поступает в верхнюю часть бака, а оттуда через автоматический смесительный клапан и котел подается к потребителям. Все оборудование, кроме солнечного коллектора, уста­навливаемого снаружи, размещается в здании, поэтому

Ц

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис. 28. Солнечная водонагревательная установка с принудительной

Циркуляцией: “ ■ _•

/ — солнечный коллектор: 2 — бак-аккумулятор; 3 —насос; 4 — клапан; ХВ и ГВ — холодная и горячая вода

Подобные системы могут эксплуатироваться и в холод­ный период года. Газовый котел предназначен для дове­дения температуры горячей воды, предварительно нагре­той за счет солнечной энергии, до требуемого значения. При отсутствии солнечной радиации или недостаточном ее поступления вся тепловая нагрузка горячего водо­снабжения обеспечивается газовым котлом.

Солнечные водонагреватели могут использоваться в качестве первой ступени для предварительного подо­грева воды в обычных топливных системах горячего во­доснабжения жилого здания.

Для достижения высокой эффективности всей гелио - топливной системы горячего водоснабжения следует из­бегать смещения горячей и холодной жидкости в баке - аккумуляторе, для чего в нем необходимо поддерживать

Температурное расслоение (стратификацию) жидкосщ. Горячая жидкость имеет меньшую плотность, чем холод­ная, и поэтому она находится в верхней части бака, а тем­пература в нем уменьшается сверху вниз. Жидкость по­дается в солнечный коллектор из нижней части бака, где она имеет наиболее низкую температуру, и благодаря этому обеспечивается более высокий КПД коллектора. Нагретая жидкость из коллектора подается в верхнюю

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис. 29. Двухконтурная схема солнечной водонагревательной уста­новки:

I — солнечный коллектор; 2 — теплообменник; 3 — аккумулятор горячей воды*

4 — дублер (газовый котел); 5 —насос; 6 — расширительный бак; / — автома­тический смесительный клапан; ХВ и ГВ — холодная и горячая вода

Зону бака. Для обеспечения температурной стратифика­ции жидкости в баке можно, в частности, использовать перфорированные горизонтальные перегородки,. разделя­ющие бак на две или несколько зон и предотвращающие перемешивание слоев жидкости с разными температу­рами. Отводить горячую воду к потребителю необходи­мо из верхней части бака, где также можно установить электронагреватель, который будет обеспечивать требу­емую температуру горячей воды при любых погодных условиях. Однако наилучшим решением является исполь­зование двух баков-аккумуляторов — одного с высокой, температурой жидкости, а второго — с низкой.

По экономическим соображениям за счет солнечной энергии целесообразно покрывать до 80 % нагрузки го­рячего водоснабжения, поэтому необходимо использовать наряду с коллектором солнечной энергии (КСЭ) также

Дополнительный источник энергии (ДИЭ). На рис. 30 показаны различные схемы подвода энергии от ДИЭ: 1) непосредственно в бак-аккумулятор (АТ); 2) к горя­чей воде (ГВ) на выходе из бака-аккумулятора или 3) к холодной воде (ХВ) на байпасной линии. В качестве ДИЭ может использоваться электронагреватель или топ­ливный котел. Циркуляция теплоносителя в контуре КСЭ осуществляется насосом Н. Изменение эффективности

SHAPE \* MERGEFORMAT СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис. 30. Схемы,, подвода тепло­ты от дополнительного источ­ника энергии

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Сиетемы в зависимости от применяемого способа подво­да дополнительной энергии связано со средним уровнем температуры воды в коллекторе. При подводе дополни­тельной энергии непосредственно в бак-аккумулятор (рис. 30, а) повышается средняя температура теплоноси­теля в коллекторе, а следовательно, снижается его КПД и теплопроизводительность и в результате увеличивает­ся потребление дополнительной энергии. Это означает, что солнечная энергия используется недостаточно эф­фективно. Наилучшим образЬм солнечая энергия исполь­зуется при последовательной схеме подключения дубли­рующего источника энергии (рис. 30, б). В этом случае вода предварительно подогревается за счет солнечной энергии до сравнительно невысокой температуры, поэто­му средний уровень температуры теплоносителя в кол­лекторе низкий, а КПД и теплопроизводительность кол - лектора максимальны. Схема подвода дополнительной

Энергии в холодной воде в байпасной линии (рис. 30, в) наименее удачна, так как при этом недостаточно полно используется солнечная энергия из-за того, что часть во­ды вообще не нагревается ею, а поступает сразу в топ­ливный дублер. Что же касается КПД и геплопроизводи - тельности самого коллектора, то в этом отношении да^ ная схема аналогична второй схеме.

Можно дать следующие рекомендации относительно, схемного решения комбинированных солнечно-топлив- ных установок горячего водоснабжения. Во-первых, не­обходимо обеспечивать улавливание максимально воз­можного количества солнечной энергии, что достигается, снижением среднего уровня температуры теплоносителя в коллекторе и использованием эффективного коллекто­ра. Во-вторых, следует исходить из того, что солнечная энергия должна использоваться для предварительного подогрева теплоносителя, в то время как дополнитель­ный источник энергии (топливо или электроэнергия) — для доведения теплоносителя до требуемой температуры. При таком подходе обеспечивается максимальная эко­номия топлива благодаря наиболее эффективному ис­пользованию солнечной энергии. В-третьих, необходимо избегать смешения сред с различными уровнями темпе­ратуры в аккумуляторе теплоты, в частности, с этой точки зрения не рекомендуется размещать электрона­греватель в нижней части бака-аккумулятора или осу­ществлять подвод теплоты от дублера непосредственно в бак-аккумулятор гелиоустановки. Как минимум, верх­няя часть бака, где размещается дублер, должна быть отделена перфорированной перегородкой от нижйей, в которую подводится теплота от солнечного коллекто­ра. Оптимальным решением является использование двух баков — одного с низкой температурой теплоносителя, обеспечиваемой солнечным нагревом, а второго с высо­кой температурой, обеспечиваемой дублером.

В настоящее время успешно эксплуатируются уста­новки горячего водоснабжения для сезонных потребите­лей. Так, гелиоустановка в подмосковном пионерлагере «Звездочка» дает 7,5 т горячей воды в день. Ряд уста­новок построен ПО «Спецгелиотепломонтаж» (г. Тби­лиси) на курортах Грузии. Потенциальные масштабы использования сезонных установок горячего водоснаб­жения в СССР соответствуют общей площади поверх­ности солнечных коллекторов 250 млн. м2, при этом ожи-

Даемая экономия топлива оценивается в 40 млн. т услов­ного топлива в год.

На рис. 31 показана схема душевой кабины, выпуска­емой ПО «Моссантехконструкция». Она изготовляется из асбоцементных плит. Ее габариты 1850Х1900Х XI150 мм. Коллектор площадью 2 м2 и бак вместимос­тью 100 л размещены на крыше. К сожалению, кабина имеет большую массу, которая без воды в системе со-

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рие. 31. Схема душевой кабины:

/ — коллектор; 2 —бак горячей воды; 3 —душ; 4, 5 — трубы; 6, 7 — вентили; В— кран переключения; 9 — водопровод

Ставляет 360 кг. За один летний день в Подмосковье можно получить от 120 до 160 л воды с температурой 40 °С, а за се"зон с апреля по сентябрь можно получить экономию в 400—700 кг условного топлива.

Для индивидуальных потребителей следует рекомен­довать использовать водонагреватели с естественной циркуляцией воды или компактные устройства, посколь­ку они имеют хорошую эффективность при невысокой це­не и просты в конструктивном отношении, а следователь­но, и надежны. .

В СССР для теплоснабжения зданий расходуется зна­чительная часть всех потребляемых топливно-энергети­ческих ресурсов. Использование солнечной энергии для этих целей позволит получить существенную экономию. Уже сейчас в различных районах южной части нашей страны эксплуатируются опытные солнечные установки теплоснабжения зданий, в перспективе масштабы внед­рения систем солнечного отопления будут более значи­тельными.

Различают активные и пассивные системы солнечного теплоснабжения зданий. Характерным признаком актив­ных систем является наличие коллектора солнечной энер­гии, аккумулятора теплоты, дополнительного источника энергии, трубопроводов, теплообменников, насосов или вентиляторов и устройств для автоматического контро­ля и управления. В пассивных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструкции здания, а движение теплоносителя (воздуха) осуществляется за счет есте­ственной конвекции без применения вентилятора. В стра­нах ЕЭС в 2000 г. пассивные гелиосистемы будут давать экономию 50 млн. т нефти в год.

Гелиосистема теплоснабжения может работать эф­фективно только в том случае, если при разработке кон­струкции самого здания учтены требования, направлен­ные на снижение потребности в тепловой энергии. Это лучше всего достигается в так называемых сверхизоли- рованных домах, имеющих хорошую тепловую изоля­цию стен, потолка, пола и практически герметичную кон­струкцию наружных ограждений. В таких домах коэф­фициент теплопотерь для стен составляет всего 0,15 Вт/ /(м2-°С), а неконтролируемая естественная инфильтра­ция наружного воздуха в здание характеризуется чрез­вычайно низкой кратностью воздухообмена (0,1 ч-1). Требуемое качество воздуха внутри помещений обеспе­чивается за счет регулируемой вентиляции (не менее 0,51/ч воздухообмена в час) с утилизацией теплоты уда­ляемого воздуха. Общий коэффициент теплопотерь в та­ких зданиях лежит в пределах 0,7—1,2 Вт/(м2-К). Теп - лопотери здания частично компенсируются за счет теп­ловыделения людей, электробытовых и осветительных приборов и оборудования, которое уменьшает тепловую

Нагрузку отопления примерно на Уз - Общий эффект сверх­изоляции зданий состоит в сокращении длительности отопительного периода и снижении суммарного годово­го расхода теплоты. Благодаря этому уменьшается про­должительность периода работы гелиосистемы и повы­шаются ее технико-экономические показатели, а также годовая доля солнечной энергии в покрытии тепловой на­грузки. Одновременно снижается пиковая нагрузка ото­пления и в результате этого уменьшается требуемая мощ­ность дополнительного (резервного) источника энергии. Распределение теплоты между отдельными комнатами, может осуществляться путем естественной конвекции воздуха через открытые двери.

Второй подход к снижению тепловых потерь зданий состоит в использовании высокоэффективных окон, на­пример со специальными покрытиями на стекле или по­лимерных пленках, расположенных между двумя слоями стекла. Могут использоваться покрытия, обеспечивающие высокую пропускательную способность по отношению к солнечной энергии, и покрытия с низкой излучатель - ной способностью для теплового излучения. При приме­нении таких окон температура внутренней поверхности повышается и благодаря этому уменьшается конденса­ция водяных паров на стекле и увеличивается ощущение комфорта. Применение специальных окон, герметичных рам с вакуумированным зазором между двумя слоями остекления наряду с уменьшением теплопотерь также снижает уровень проникающего шума.

Итак, в зданиях, в которых предусматривается эффек­тивное использование солнечной энергии, должен быть обеспечен ВЫСО&1Й уровень сохранения энергии, особен­но в условиях холодного климата. При этом мощность гелиосистемы и дополнительного источника энергии, а также их размеры и стоимость будут минималь­ными.

Пассивные гелиосистемы отопления зданий. Для ото­пления зданий используются следующие типы пассивных гелиосистем:

С прямым улавливанием солнечного излучения, посту­пающего через остекленные поверхности большой пло­щади на южном фасаде здания (рис. 32, а) или через примыкающую к южной стене здания солнечную тепли­цу (зимний сад, оранжерею) (рис. 32, б);

С непрямым улавливанием солнечного излучения, т. е.

С теплоаккумулирующей стеной, расположенной за осте­клением южного фасада (рис. 32, в);

С контуром конвективной циркуляции воздуха и галеч­ным аккумулятором теплоты. Дом с такой системой по­казан на рис. 33. Кроме того, могут использоваться гиб­ридные системы, включающие элементы пассивной и ак­тивной гелиосистемы.

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Пассивные системы составляют интегральную часть самого здания, которое должно проектироваться таким образом, чтобы обеспечивать наиболее эффективное ис­пользование солнечной энергии для отопления. Наряду с окнами и остекленными поверхностями южного фасада для улавливания солнечного излучения также использу­ются остекленные проемы в крыше и дополнительные окна в верхней части здания, которые повышают уровень комфорта человека, так как исключают прямое попада­ние солнечных лучей в лицо. Одно из важнейших усло­вий эффективной работы пассивной гелиосистемы заклю­чается в правильном выборе местоположения и ориента­ции здания на основе критерия максимального поступ­ления и улавливания солнечного излучения в зимние ме­сяцы.

Пассивные системы просты, но для их эффективной работы требуются регулирующие устройства, управляю­щие положением тепловой изоляции светопрозрачных по­верхностей, штор, заслонок в отверстиях для циркуляции воздуха в теплоаккумулирующей стене и т. п.

Прямое улавливание солнечной энергии может эффек­тивно осуществляться при соблюдении следующих усло-

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис. 33. Солнечный дом с прямым улавливанием солнечной энергии, конвективным контуром для нагрева воздуха и аккумулированием теплоты в слое камней:

/— солнцезащитное устройство; 2 — воздушный коллектор; 3 — черный метал­лический лист; 4 — К1ннй; 5 — возврат воздуха; 6 — регулирование потока воздуха; 7 — свежий воздух; $ — теплый воздух

Вий: 1) оптимальная ориентация дома — вдоль оси вое - ток—запад или с отклонением до 30° от этой оси; 2) на южной стороне дома должно быть сосредоточено не Ме­нее 50—70% всех окон, а на северной—-не более 10%, причем южные окна должны иметь двухслойное остекле­ние, а северные окна — трехслойное; 3) здание должно иметь улучшенную тепловую изоляцию и низкие тепло - потери вследствие инфильтрации наружного воздуха;

4) .внутренняя планировка здания должна обеспечивать расположение жилых комнат с южной стороны, а вспо­могательных помещений —с северной; 5) должна быть обеспечена достаточная теплоаккумулирующая способ­ность внутренних стен и пола для поглощения и акку­мулирования теплоты солнечной энергии; 6) для предот­вращения перегрева помещений в летний период над окнами должны быть предусмотрены навесы, козырьки и т. п. КПД такой системы отопления, как правило, со­ставляет 25—30%, но в особо благоприятных климати­ческих условиях может быть значительно выше и дости­гать 60%. Существенным недостатком этой системы являются большие суточные колебания температуры воз­духа внутри помещений.

Пассивные системы прямого улавливания солнечной энергии имеют наименьшую стоимость для вновь стро­ящихся зданий. Пассивные системы вообще имеют такой же срок службы, как и само здание, и весьма низкие текущие эксплуатационные расходы. Использование си­стемы прямого улавливания солнечной энергии в суще­ствующих зданиях связано со значительными трудно­стями, поэтому их применение в этих случаях нецелесо­образно.

Наряду с получением теплоты эти системы также обеспечивают эффективное использование дневного ос­вещения, благодаря чему снижается потребление элек­троэнергии. Однако площадь остекления южного фаса­да должна быть значительной, чтобы обеспечить требу - ' емую долю солнечной энергии в покрытии тепловой нагрузки, а теплоаккумулирующие элементы (тепловая масса) должны быть размещены, в наиболее благоприят­ных местах, чтобы на них попадали солнечные лучи большую часть дня. Следует избегать излишнего пере­грева тех зон здания, где постоянно находятся люди, а также попадания в них прямых солнечных лучей, «сол­нечных зайчиков» и бликов. Вместо остекления верти­кальных стен или наряду с ним может быть использо­вано остекление элементов крыши и чердачных помеще­ний, сообщающихся с жилыми помещениями. При этом облегчается задача размещения теплоаккумулирующих элементов, меньше возникает «солнечных зайчиков» и уменьшается затенение тепловой массы предметами интерьера и экстерьера.

Важнейшее требование, предъявляемое к пассивным

Системам, состоит в необходимости обеспечения теплово­го комфорта и регулирования температурного режима в помещениях. В помещениях с пассивным использова­нием солнечной энергии комфорт обеспечивается при бо­лее низких температурах воздуха по сравнению с обыч­ными зданиями,' так как температура всех или большин­ства внутренних помещений выше температуры воздуха и они излучают теплоту на человека, отчего ощущение комфорта повышается.

Однако при использовании пассивных систем прямо­го улавливания солнечной энергии трудно поддается ре­гулированию температура воздуха в помещениях из-за большой тепловой инерции их теплоаккумулирующих элементов. Национальное проецирование 'Температурно­го режима помещений предполагает оптимизацию мас­сы и размещения каждого из этих элементов, а также использование навесов и козырьков, тепловой изоляции светопрозрачных поверхностей в ночное время, автомати­чески управляемых заслонок для организации поступле­ния и удаления воздуха, закрытия и открытия окон, фор­точек и фрамуг и т. п.

В этих системах используются окна и остекленные по­верхности большой площади в проемах стен на южной стороне дома. Площадь остекления определяется тепло­вой нагрузкой отопления и площадью отапливаемых по­мещений. Для уменьшения тепловой нагрузки здание должно быть построено с применением улучшенной теп­ловой изоляции и использованием других мероприятий по сохранению энергии. Этой цели служит также исполь­зование тепловой изоляции светопрозрачных наруж­ных поверхностей в ночное время, ДЛЯ «его могу!1 ис­пользоваться теплоизоляционные Щиты, ставни, плотные шторы и т. п. В доме, показанном на рис. 33, предус­мотрено прямое улавливание солнечной энергии, а так­же имеется контур естественной конвективной циркуля­ции воздуха, нагретого в коллекторе, с аккумулирова­нием теплоты в слое гальки и регулированием движения воздуха с помощью клапана, а также солнцезащитное устройство.

Пассивные гелиосистемы с остекленной теплоаккуму­лирующей южной стеной (стеной Тромба), окрашенной в черный или иной темный цвет, отличаются достаточно высокой эффективностью и могут иметь несколько вари­антов конструктивного исполнения. Исходным вариан-

Том является остекленная южная бетонная или камен­ная стена темного цвета, не имеющая отверстий для циркуляции воздуха. Проникающее через одно - или двух­слойное остекление солнечное излучение поглощается поверхностью стены, покрашенной темной матовой крас­кой, и аккумулируется в массе стены, что вызывает по­вышение ее температуры. Аккумулированная днем теп­лота передается с некоторым запаздыванием внутрь помещений посредством излучения и конвекции. При толщине бетонной стены 200 мм запаздывание составля­ет 5 ч.

Более совершенной является конструкция стены с отверстиями на нижнем и верхнем уровнях для циркуля­ции воздуха. При этом существенно, улучшается переда­ча теплоты в помещения. Регулирование движения воз­духа можно осуществлять с помощью поворотных засло­нок. Может также использоваться вентилятор небольшой мощности. При использовании пассивной гелиосистемы с теплоаккумулирующей стеной Тромба расстояние меж­ду нею и внутренней стеной здания ограничено, так как эффект лучистого отопления распространяется на рас­стояние 5—7 м. Бетонная или каменная теплоаккумули- рующая стена может быть заменена на так называемую водяную стену, состоящую из установленных друг на друга резервуаров (бочек) с водой, причем эта система даже более эффективна (КПД достигает 35 %), посколь­ку вода имеет высокую удельную теплоемкость. Однако этот тип пассивных систем, нв подходит для районов с холодным климатом с преобладанием пасмурных дней в зимний период.

Разрез дома с пассивной системой отопления и гра­вийным аккумулятором, расположенным под домом, по­казан на рис. 34. В системе предусмотрены остекленная теплоаккумулирующая стена южного фасада, наклонные окна большой площади в верхней части дома, теплоизо­ляция северной стены и клапан, перекрывающий осте­кление в ночное время. Распределение теплоты осуще­ствляется за счет естественного движения нагретого воз­духа.

Система с гелиотеплицей {зимним садом, солярием или оранжереей), примыкающей к южной стене здания, может иметь КПД около 60—75 %, но в здание поступа­ет всего лишь 10—30% количества солнечной энергии, падающей на остекление теплицы.

При значительной доле диффузного излучения КПД этой системы на 5—10 % выше, чем КПД системы прямо­го улавливания солнечной энергии. При этом следует применять двух-трехслойное остекление теплицы в соче­тании с окнами в примыкающей стене здания. Площадь остекления теплицы должна быть в 1—3 раза больше площади окон жилого дома. В гелиотеплице должно быть предусмотрено аккумулирование энергии в тепловой мас­се (бетонная плита или балка в полу и т. п.). Площадь

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис. 34. Солнечный дом с гравийным аккумулятором теплоты:

/ — остекление; 2 — теплоизоляция; 3— окно; 4 — насыпь; 5 — гравий; 6 — кух­ня: 7 — клапан

Остекления теплицы должна быть равна площади по­верхности тепловой массы в полу, а отношение площадей тепловой массы в жилом здании и в гелиотеплице (оран­жерее) должно быть в пределах 0—1. Стена, отделяю­щая гелиотеплицу (зимний сад, оранжерею) от жилого помещения, может представлять собой теплоизолирован­ную массивную стену толщиной 100—150 мм, причем 25— 45 % площади этой стены должно быть занято окном, Доля остекления восточной и западной стен гелиотеп­лицы (оранжереи) должна быть не более 0,1 общей пло­щади пола гелиотеплицы (оранжереи). Не следует ис-> пользовать наклонные остекленные поверхности в оран­жерее, так как при этом труднее регулировать тепловой режим. Поскольку пол гелиотеплицы (оранжереи) — это основная тепловая масса, ее следует проектировать с уче­том таких рекомендаций:

Стена фундамента гелиотеплицы (оранжереи) дол­жна быть теплоизолирована;

Пол и тепловая масса в нем должны быть тепло - и гид - роизолированы для защиты от грунтовых вод;

Нижний уровень остекления оранжереи должен иметь отметку 0,15 м от уровня пола для обеспечения хороше­го освещения и зарядки теплоаккумулирующей массы.

Поглощательная способность а пола должна быть как можно выше, для чего его следует красить в темный цвет (для неокрашенного бетонног'о пола оь=0,65). На полу не должно быть ковра или половиков, и допускается ми­нимальное его затенение предметами мебели, 15—25 % площади пола может быть занято растениями или дорож­ками. Температура в оранжерее должна быть не выше 25—28 °С зимой и 20—25 °С летом, а при понижении температуры до 7—13 °С должно включаться дополни­тельное отопление.

Для улучшения распределения теплоты в жилом по­мещении должны быть предусмотрены четыре отверстия в стене, обеспечивающие расход воздуха около 0,1 м3/с.

Для северных районов СССР представляет определенный инте­рес опыт скандинавских стран в разработке пассивных гелиосистем отопления зданий. В традиционной архитектуре Швеции применяют­ся небольшие и тщательно теплоизолированные индивидуальные жилые дома с окнами небольшой площади, ориентированными на юг, восток и запад, и печным отоплением. Современный шведский стандарт определяет следующие значения коэффициентов теплопо - терь для различных наружных ограждений здания:

Для стен /(=0,3 Вт/м2-°С), что обеспечивается при использова­нии тепловой изоляции из минеральной ваты толщиной 130 мм;

Для потолка (крыши) и пола К= 0,2 Вт/(м2-°С) при толщине слоя минеральной ваты 200 мм;

Для окон Я=2 Вт/(м2-°С) — тройное остекление.

Построенный в соответствии с этим стандартом шведский дом среднего размера для одной семьи имеет годовое энергопотребление 15—20 МВт-ч, включая расход теплоты на отопление и горячее во­доснабжение, а также расход электроэнергии. Это эквивалентно рас­ходу 1,6—2 М3 мазута. Дом располагают так, чтобы его светопро­зрачные поверхности не затенялись в холодный период года. Те помещения, в которых люди находятся большую часть суток, распо­лагают на южной стороне здания. Общая площадь окон—менее 15 % площади стен. В неотопительный период необходимо предотвращать попадание солнечных лучей в здание, для этого используют навесы (козырьки) или выступы крыши, спроектированные так, чтобы про­пускать внутрь здания максимум солнечного излучения весной и осенью и сводить к минимуму попадание прямых солнечных лучей ле'Гом.

Можно испЬльзовать естественную вентиляцию, но поступление воздуха в помещение можно также регулировать с помощью при­строенной к южной стене здания гелиотеплицы (зимнего сада, оран­жереи), в которой наружный воздух зимой подогревается, а удале­ние воздуха из помещений регулируется.

Естественно, в зимний период требуется энергия от дополни­тельного топливного источника из аккумулятора теплоты.

Дома с пассивными системами отопления могут строиться на различных ширбтах. Примером может служить группа домов, по­строенных в Швеции.

Двухэтажные жилые дома на 16 квартир в г. Карльстаде (59° с. щ.) были построены в 1984 г. и расположены так, чтобы не было взаимного затенения. Каждый дом поставлен на бетонное основание толщиной 150 мм с тепловой изоляцией, а стены сделаны из дерева. Дом |мее* гелиотеплицу с двойным остеклением. Коэффициент теп - лопотерь’равен для стен К =■ 0,12 Вт/(м2-°С) (толщина слоя мине­ральной ваты 6=360 мм), для пола /(=0,12 Вт/(м2-°С) (6=220 мм), для {срьшш /(=0,08 Вт/(м2-°С) (6=550 мм), для окон с тройным остеклением и отражающей металлической фольгой Д= = 1,4 Вт/(м2-°С). Воздухообмен осуществляется с помощью вентиля­тора, и система вентиляции объединена с отоплением. Кратность воздухообмена равна 0,5 1/ч. Зимой наружный воздух проходит че­рез гёлиотеплицу. В теплый лериод года (с мая Что сентябрь) окна полностью защищены от попадания солнечных лучей с помощью выступов крыши. Дома потребляют очень мало энергии—27 кВт-ч/м2 6 £6д. Для отопления дома с жилой площадью 100 м2 требуется 270Ягкидкого топлива в год.

Реализуется совместный шведско-западногерманский проект строительства двух жилых домов на 11 квартир каждый в городах Ингодьштадт (ФРГ) и Хальмстаде (Швеция), расположенных на шйроте 48,8° и 56,7° с. ш. Среднегодовая температура наружного воз­духа +7,9 и +7,2°С, а его расчетная температура —16 °С.

В обоих случаях используется тяжелая бетонная конструкция здания, южная ориентация, остекление южной стены, гелиотеплица, защта от солнечного излучения летом с помощью выступающей Йр]Щй, Коэффициенты теплопотерь равны для стен 0,2, для окон 1,4, для'«Грыши 0,11 и для пола 0,12 Вт/(м2-К). Основание дома — бетон­ная йлита на земле, несущие конструкции — из бетона, остальные — из дерева. Отопление — водяное от газового (электрического) котла. Вентиляция — механическая с утилизацией теплоты удаляемого воз - Кука с помощью теплового насоса. Площадь отапливаемых помеще­ний 934 м2, годовое потребление энергии для отопления 33 000 кВт-ч, удельное потребление теплоты 35 кВт-ч/м2 в год.

Рациональное использование дневного освещения. Но­вое достижение в области пассивного использования сол­нечной энергии—это такие архитектурно-планировочные И конструктивные решения здания, благодаря которым Обеспечивается максимальное использование днев­ного освещения и, следовательно, сокращаются затраты на искусственное освещение, особенно в летнее время. На достижение этой же цели направлено введение летне­го времени. Кроме того, в жарком климате переход на максимальное использование дневного света существен­но уменьшает тепловую нагрузку на систему кондицио­нирования воздуха. Благодаря применению волоконных световодов естественное освещение может быть обеспе­чено также для подземных сооружений.

Регулирование количества света, проходящего через остекление, может быть осуществлено при использова­нии окрашенного стекла или специального стекла, на которое накладывается небольшое электрическое напря­жение и благодаря этому регулируется его пропускатель - ная способность по отношению к солнечному свету. При­менение жидкокристаллических пленок в сочетании с электрическим напряжением обеспечивает переход от прозрачного стекла к полностью непрозрачному.

Активные гелиосистемы отопления зданий. В состав активной системы солнечного отопления входят коллек­тор солнечной энергии, аккумулятор теплоты, дополни­тельный (резервный) источник энергии, теплообменники для передачи теплоты из КСЭ в аккумулятор и из по­следнего к потребителям, насосы или вентиляторы, тру­бопроводы с арматурой и комплекс устройств для авто­матического управления работой системы.

В зависимости от вида теплоносителя в контуре КСЭ различают жидкостные и воздушные гелиосистемы теп­лоснабжения. Теплоносителем в КСЭ может быть жид­кость (вода, 40—60 %-ный водный раствор этилен - или пропиленгликоля, органические теплоносители и др.) или газ (воздух). Использование воздуха позволяет исклю­чить проблемы замерзания и коррозии, несколько сни­зить вес установки, но теплотехнически воздушные системы менее эффективны, чем жидкостные. В большин­стве эксплуатируемых гелиосистем теплоносителем слу­жит вода или антифриз. При этом КПД КСЭ выше, но существует опасность замерзания и коррозии, протечек теплоносителя, его перегрева. Теплота в здании распре­деляется с помощью вентилятора и воздуховодов в воз­душных системах или посредством излучающих панелей, радиаторов и конвекторов, рассчитанных на низкотем­пературный теплоноситель (в жидкостных системах). Если тепловая нагрузка отопления равна 45—60 Вт/м2,
то при использовании напольной системы отопления (по­верхность теплоизолированного снизу пола обогревает­ся теплой водой, циркулирующей по проложенным в нем трубам) достаточно иметь температуру воды 30 °С, а тем­пературу поверхности пола 22—24 °С, чтобы в помеще­нии температура воздуха была 18°С. При этом коэффи­циент теплоотдачи от пола к воздуху составляет 10— 12 Вт/(м2-°С). Пол обычно выполняется из бетона, внут­ри которого прокладывается ряд полиэтиленовых труб 020 мм для теплоносителя, снизу размещается слой теп-

$47

А)

Ч 5 Ч

 

В.

 

7

 

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Б)

 

Рис. 35. Принципиальные схемы водяной (а) и воздушной (б) ак­тивных систем солнечного отопления:

 

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

? —коллектор солнечной энергии; 2 — аккумулятор теплоты; 3 — дополнитель­ный источник энергии; 4 — насос (вентилятор); 5 — регулирующий клапан; Б — подача МгретОго теплоносителя; 7 — возврат охлажденного теплоносителя

Лоизоляции, который гидроизолируется от слоя каменной Засыпки. В другом варианте используются медные тру­бы с алюминиевым ребром (листом) толщиной 0,5 мм, расположенным над слоем жесткого пенополиуретана. Сверху на алюминиевый лист укладывается тонкий слой войлока, а на не^о палас. Под отапливаемым полом может размещаться галечный аккумулятор, через ко­торый с помощью вентилятора продувается воздух.

Принципиальные схемы жидкостной и воздушной си­стем солнечного отопления (рис. 35, а и б) содержат солнечный коллектор, аккумулятор теплоты, насосы ‘(вентиляторы), дополнительный источник энергии, ре­гулирующую арматуру, подающий и обратный трубопро­воды (воздуховоды). На рис, 36 показан жилой дом с жидкостным солнечным коллектором на крыше. Ос­тальное оборудование гелиосистемы отопления и горя­
чего водоснабжения дома размещено в подвале. Там установлены основной аккумулятор теплоты, теплообмен­ник 3 для подогрева воды, бак для аккумулирования го­рячей воды, теплообменник 5 для нагрева воздуха для отопления дома, расширительный бак и теплообменник 8 для передачи теплоты от антифриза к воде. Снаружи дома находится теплообменник 6, предназначенный для сброса избыточного количества уловленной солнечной теплоты в летний период. Итак, в доме предусмотрено воздушное отопление.

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

Рис..36. Дом с активной гелиосистемой теплоснабжения:

/ — солнечный коллектор; 2 — аккумулятор теплоты; 3 — теплообменник для подогрева воДы; 4 — бак-аккумулятор горячей воды; 5 — теплообменник для нагрева воздуха; 6 — тепЛоббмейнйк для сброса избыточной теплоты; 7 —рас­ширительный бак; 8 — теплообменник для нагрева воды

Основное и вспомогательное оборудование гелиоси­стемы, включая аккумулятор теплоты, теплообменники, насосы, тепловой насос, дополнительные подогреватели для горячей воды и отопления, т. е. все, кроме солнечного коллектора, устанавливаемого. на крыше, может разме­щаться в подвале дома или пристройке.

Сравнение активных и пассивных гелиосистем дает возможность выявить их преимущества и недостатки. Преимущества активных гелиосистем связаны с легко­стью и гибкостью интегрирования системы со зданием, возможностью автоматического управления работой си­стемы и снижением тепловых потерь. Однако при приме­нении активных гелиосистем часто возникают проблемы, обусловленные недостаточной надежностью оборудова - ная, в том числе системы автоматического управления, неправильными его установкой и монтажом, плохим тех­ническим обслуживанием, опасностью замерзания и кор­розии, особенно в системах с жидкостным коллектором солнечной энергии. Существенным недостатком этих си­стем является их высокая стоимость. В отличие от них пассивные системы просты, надежны в работе и недоро­ги, но они также имеют недостатки. Прежде всего воз­никают трудности с поддержанием температурного ре­жима, необходимого для обеспечения теплового комфор­та в отапливаемых помещениях. Так, в системах с пря­мым улавливанием солнечной энергии из-за недоста­точной массы теплоаккумулирующих элементов и их не­правильного размещения возникают сильные колебания температуры в помещениях. При использовании стены Тромба могут иметь место большие утечки теплоты на­ружу, если в ночное время не закрывать остекленные по­верхности тепловой изоляцией. В то же время здания с гелиотеплицей летом могут испытывать перегрев. В гиб­ридных системах можно соединить достоинства актив­ных и пассивных элементов и устранить многие недос­татки, повысив тем самым эффективность систем при умеренных капиталовложениях.

Индивидуальные солнечные установки

Монтаж солнечных батарей. Выбор крепежей

Солнечные батареи являются преимуществом современного технического развития планеты и позволяют каждому почувствовать свою независимость. Такое конструктивное решение нуждается в профессиональном подходе и качественной комплектации. Очень важную роль играет крепеж для …

Сонячна електростанція для будинку

Якщо відповісти на питання – що ж таке сонячна електростанція, то відповідь буде, напевно стислою, але змістовною - інженерна споруда, яка сприяє перетворенню сонячної радіації в електричну енергію.

Солнечные панели купить можно на нашем сайте hexagon-energy

Солнечные панели представляют собой сборные установки. Они состоят из полупроводниковых ячеек. Каждая такая ячейка способна преобразовать энергию солнечных лучей в электрическую. Благодаря таким свойствам солнечные панели стали одним из значимых …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.