Comparison of System Concepts

To compare the solar fractions that are reached with and without a conventional storage tank, the ranges of solar fractions from both nomograms are shown in a single diagram in Figure 7.


Because of the limited storage capacities of the concrete slab, significantly larger collector areas are necessary to reach the same high solar fractions as with a conventional storage tank. Therefore, the cost-to-benefit optimum for systems using the concrete slab as a heat store has been limited to a solar fraction of 30%. Please note that this is only an approximate value and depends strongly on the boundary conditions of each project.

3. Conclusions

Solar thermal energy is a good solution for space heating of industrial buildings if there is no or not enough waste heat available. When considering solar thermal energy for space heating of a factory building, the first steps should be to reduce the heat demand of the building by insulating the building and reducing infiltration losses (e. g. loading docks instead of open doors). The nomograms were developed to provide a means for rough dimensioning typical system configurations. A system concept with a water storage tank and a system concept using the concrete floor slab as storage medium were analyzed and described in detail. If the utilization ratio is high, the solar fractions that can be reached are similar for both system concepts. Solar fractions reached with systems without storage tank can even be higher compared to systems with storage tanks. High utilization ratio means that either one or both the collector area or the heat requirement is low. In these cases, the cheaper system concept without a storage tank makes a lot of sense. However, if the heat requirement is relatively large or if very high solar fractions should be reached, the system concept with a storage tank has an advantage. It should be noted that the option of having no storage tank and reaching a 100% solar fraction is feasible if an air temperature in the building that sometimes falls below the desired set value can be tolerated.

4. Acknowledgements

The presented work was performed as part of IEA-Solar Heating and Cooling and Solar Paces Task 33/IV “Solar heat for industrial processes”. The Austrian participation was financed by the Austrian Federal Ministry of Transport, Innovation and Technology.


[1] Klein, S. A. et al. (2005). TRNSYS, A Transient System Simulation Program - University of Wisconsin - Madison, Solar Energy Laboratory, Version 16.


Validation of the library components

The validation of the models is necessary to ensure that the calculated results are valid. Furthermore it is to proof what differences consist due to the assumptions made in the …

Solar industrial process heat plants in operation

Data gathered in the framework of the IEA Task 33/IV include comprehensive information about the geographical distribution of the solar thermal plants, the industrial sectors addressed, the specific processes, the …

Experimental Investigations On Solar Driven Desalination Systems Using Membrane Distillation

J. Koschikowski*, M. Wieghaus*, M. Rommel*, Vicente Subiela Ortin**, Baltasar Penate Suarez**, Juana Rosa Betancort Rodriguez** * Fraunhofer Institute for Solar Energy Systems ISEHeidenhofstr.2,79110 Freiburg, GermanyTel +49-761-4588-5294Fax +49-761-4588-9000email ioako@ise. fhg. …

Как с нами связаться:

тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: