COMPUTATIONAL WELDING MECHANICS

MANUFACTURING

Figure 2-1: Tools for evaluation of manufacturing effects between functional evaluation and planning of manufacturing (vertical) also between concept and details (horizontal), from [3 and 4].

In Figure 2-1, the upper part presents the traditional tools for functional evaluation and the lower part show the systems for computer aided design and finite element programs. Design engineers will use these tools, especially to improve the product and its functionality as much as possible. Weld simulation belongs to the middle part which includes tools for evaluation of manufacturing effects. This covers the most negative effects of manufacturing, on the properties in different phases of the process leading to defects in material state, form accuracy, measurement tolerance, strength, hardness and other quality features. The development of tools dedicated to supporting the evaluation of manufacturing effects has lagged due to the complexity of simulation processes. In Figure 2-1 the lower part demonstrates the current tools for planning of manufacturing, and above it, systems for programming robots and controlling material flow. Manufacturing engineers will use these tools especially to improve the production sequence and flow of material in the factory increasing the revenue of the manufactured product. Development steps from concept to detail in design and in manufacturing are shown in boxes. These steps must be run concurrently (simultaneous engineering), for which computing tools are inevitable requirements. Effort will be made in the entire process range, from raw material to the finished product, to include computers and simulations.

The calculation of weld simulation could not ignore computing tools in the future for innovative development of weld processes, weld design and their materials. Chihoski’s [5] recommendation still says it best: “A changed set of conditions often changes the weld quality too subtly to be seen, except in large quantities, and there are too many possible changes to try. Hit or miss changes in the perfect lab (the production shop) are often not permitted. It would seem then to be of great use to the welding industry to develop and evolve computer programs that rigorously portray the stress and strain arrangements for different weld conditions. This route may be the only path from the current state of technology to the ideal in scientific promise, where a manufacturer who chooses an alloy and thickness and weld conditions can compute the value of each of the other weld conditions that minimize production problems”.

COMPUTATIONAL WELDING MECHANICS

Fracture Mechanics of Welded Structures

For fracture mechanics the location and geometry of the crack or defect must be specified as input data. The crack geometry could be specified as an ordered set of points …

Material Properties Summary

Properties can be provided for a material or alloy or for a specific phase in a material or alloy. If properties are provided for a specific phase, then the macroscopic …

Weld Pool Solver

If there is a weld pool solver that computes the weld pool free surface, velocity and temperature in the weld pool and weld pool reinforcement, the input data should include …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Оперативная связь

Укажите свой телефон или адрес эл. почты — наш менеджер перезвонит Вам в удобное для Вас время.