Advanced Econometrics Takeshi Amemiya

Autocovariances

Define yh = Ey, yt+h, h = 0, 1, 2,. . . .A sequence (yA) contains important information about the characteristics of a time series {y,}. It is useful to arrange (yA) as an autocovariance matrix

7o

71

72 '

7т - і

7i

7o

7i '

7t - 2

72

7i

*

' 7i

7 т - і

7t - 2

*

■ 7i 7o

This matrix is symmetric, its main diagonal line consists only of y0, the next diagonal lines have only y,, and so on. Such a matrix is called a Toeplitzform.

5.1.1 Spectral Density

Подпись:Spectral density is the Fourier transform of autocovariances defined by /(<«)= І) 7#'°“°, - яё<ыёя,

A—«

provided the right-hand side converges.

Substituting ea = cos A + і sin A, we obtain

as

/(«) = 5) У* [cos (Aft)) — /sin(hft))] (5.1.3)

A——00

00

= 2 yh cos (Act)),

A—00

where the second equality follows from yh = and sin A =—sin (—A). Therefore spectral density is real and symmetric around o) = 0.

Inverting (5.1.2), we obtain

yh = (2tc)- 1 J eiAaf((o) da> (5.1.4)

= 7rl J cos (Aft))/(ft)) dw.

An interesting interpretation of (5.1.4) is possible. Suppose y, is a linear com­bination of cosine and sine waves with random coefficients:

Подпись: П (5.1.5)

where o)k = kn/n and (4) and {(k) are independent of each other and inde­pendent across к with E£k = E(k — 0 and V£k = V(k = a. Then we have

7h = 2 cos (w*A), (5.1.6)

fc-i

which is analogous to (5.1.4). Thus a stationary time series can be interpreted as an infinite sum (actually an integral) of cycles with random coefficients, and a spectral density as a decomposition of the total variance of y, into the variances of the component cycles with various frequencies.

There is a relationship between the characteristic roots of the covariance matrix (5.1.1) and the spectral density (5.1.2). The values of the spectral density/(<u) evaluated at T equidistant points of ft) in [—я, n are approxi­mately the characteristic roots of 2r(see Grenander and Szego, 1958, p. 65, or Amemiya and Fuller, 1967, p. 527).

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.