A COMPANION TO Theoretical Econometrics

# The Gaussian AR(1) Case without Intercept: Part 1

2.1 Introduction

Consider the AR(1) model without intercept, rewritten as3

Ayt = a0yt-1 + ut, where ut is iid N(0, a2), (29.2)

and y t is observed for t = 1, 2,..., n. For convenience I will assume that

yt = 0 for t < 0. (29.3)

This assumption is, of course, quite unrealistic, but is made for the sake of trans­parency of the argument, and will appear to be innocent.

The OLS estimator of a 0 is:

X yt-iAyt X yt-iut

7 о = = a о + І=П

X y2-i X y2-i

t=i t=i

If -2 < a 0 < 0, so that yt is stationary, then it is a standard exercise to verify that л/n (a0 - a0) ^ N(0, 1 - (1 + a0)2) in distribution. On the other hand, if a0 = 0, so that yt is a unit root process, this result reads: a0 ^ N(0, 0) in distribution,

hence plimn^^/n a 0 = 0. However, we show now that a much stronger result holds, namely that p0 = na 0 converges in distribution, but the limiting distribu­tion involved is nonnormal. Thus, the presence of a unit root is actually advan­tageous for the efficiency of the OLS estimator a 0. The main problem is that the t-test of the null hypothesis that a 0 = 0 has no longer a standard normal asymp­totic null distribution, so that we cannot test for a unit root using standard methods. The same applies to more general unit root processes.

In the unit root case under review we have yt = yt-1 + ut = y0 + X tj=1uj = X tj=1uj for t > 0, where the last equality involved is due to assumption (29.3). Denoting

t

St = 0 for t < 0, St = X uj for t > 1. (29.5)

і=1

and 62 = (1/n)Xn=1 u2t, it follows that

Next, let

Wn(x) = S[nx}/(oVn) for x Є [0, 1], (29.8)

where [z] means truncation to the nearest integer < z. Then we have:4

- X utyt-1 =1(0 2Wn(1)2 - 62)

nT1 2

1 1 = -(o 2Wn(1)2 - о2 - Ov(1/4~n)) = о 2-^(Wn(1)2 - 1) + op(1), (29.9)

and

where the integral in (29.10) and below, unless otherwise indicated, is taken over the unit interval [0, 1]. The last equality in (29.9) follows from the law of large numbers, by which 62 = о2 + Op(1/Vn). The last equality in (29.10) follows from the fact that for any power m,

Moreover, observe from (29.11), with m = 1, that /Wn(x)dx is a linear combination of iid standard normal random variables, and therefore normal itself, with zero mean and variance

Thus, fWn(x)dx ^ N(0, 1/3) in distribution. Since fWn(x)2dx > (fWn(x)dx)2, it follows therefore that fWn(x)2dx is bounded away from zero:

-1

Wn(x)2 dx

V /

Combining (29.9), (29.10), and (29.13), we now have:

This result does not depend on assumption (29.3).

Добавить комментарий

## A COMPANION TO Theoretical Econometrics

### Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

### Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

### Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

## Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

## Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua